
UNIX PROGRAMMER’S MANUAL

K. Thompson

D. M. Ritchie

November 3, 1971

INTRODUCTION

This manual gives complete descriptions of all the publicly available features
of UNIX. It provides neither a general overview (see "The UNIX Time—sharing
System" for that) nor details of the implementation of the system (which
remain to be disclosed).

Within the area it surveys, this manual attempts to be as complete and timely
as possible. A conscious decision was made to describe each program in exactly
the state it was in at the time its manual section was prepared. In
particular, the desire to describe something as it should be, not as it is,
was resisted. Inevitably, this means that many sections will soon be out of
date. (The rate of change of the system is so great that a dismayingly large
number of early sections had to be modified while the rest were being written.
The unbounded effort required to stay up—to—date is best indicated by the fact
that several of the programs described were written specifically to aid in
preparation of this manual!)

This manual is divided into seven sections:

I. Commands
II. System calls
III. Subroutines
IV. Special files
V. File formats
VI. User—maintained programs
VII. Miscellaneous

Commands are programs intended to be invoked directly by the user, in
contradistinction to subroutines, which are intended to be called by the
user’s programs. Commands generally reside in directory /bin (for binary
programs). This directory is searched automatically by the command line
interpreter. Some programs classified as commands are located elsewhere; this
fact is indicated in the appropriate sections.

System calls are entries into the UNIX supervisor. In assembly language, they
are coded with the use of the opcode sys, a synonym for the trap instruction.

The special files section discusses the characteristics of each system "file”
which actually refers to an I/O device.

The file formats section documents the structure of particular kinds of files;
for example, the form of the output of the loader and assembler is given.
Excluded are files used by only one command, for example the assembler’s
intermediate files.

User—maintained programs are not considered part of the UNIX system, and the
principal reason for listing them is to indicate their existence without
necessarily giving a complete

— ii —

description. The author should be consulted for information.

The miscellaneous section gathers odds and ends.

Each section consists of a number of independent entries of a page or so each.
The name of the entry is in the upper right corner of its pages, its
preparation date in the upper left. Entries within each section are
alphabetized. It was thought better to avoid page numbers, since it is hoped
that the manual will be updated frequently.

All entries have a common format.

The name section repeats the entry name and gives a very short
description of its purpose.

The synopsis summarizes the use of the program being described. A few
conventions are used, particularly in the Commands section:

Underlined words are considered literals, and are typed just as they
appear.

Square brackets ([]) around an argument indicate that the argument
is optional. When an argument is given as name , it always refers to
a file name.

Ellipses "..." are used to show that the previous argument—prototype
may be repeated.

A final convertion is used by the commands themselves. An argument
beginning with a minus sign — is often taken to mean some sort of
flag argument even if it appears in a position where a file name
could appear. Therefore, it is unwise to have files whose names
begin with "-".

The description section discusses in detail the subject at

hand.

The files section gives the names of files which are built into the
program.

A see also section gives pointers to related information.

A diagnostics section discusses the diagnostics that may be produced.
This section tends to be as terse as the diagnostics themselves.

The bugs section gives known bugs and sometimes deficiencies.
occasionally also the suggested fix is described.

The owner section gives the name of the person or persons to be
consulted in case of difficulty. The rule has been that the last one to
modify something owns it, so the owner is not necessarily the author.
The owner’s initials stand for:

— iii -

ken K. Thompson
dmr D. M. Ritchie
jfo J. F. Ossanna
rhm R. Morris

These three—character names also happen to be UNIX user ID’s, so
messages may be transmitted by the mail command or, if the addressee is
logged in, by write.

At the beginning of this document is a table of contents, organized by section
and alphabetically within each section. There is also a permuted index derived
from the table of contents. Within each index entry, the title of the writeup
to which it refers is followed by the appropriate section number in
parentheses. This fact is important because there is considerable name
duplication among the sections, arising principally from commands which exist
only to exercise a particular system call.

This manual was prepared using the UNIX text editor ed and the formatting
program roff.

- iv -

11/3/71 AR (I)

NAME ar -- archive

SYNOPSIS ar key afile name1 ...

DESCRIPTION ar maintains groups of files combined into a single archive
file. Its main use is to create and update library files as
used by the loader. It can be used, though, for any similar
purpose.

key is one character from the set drtux, optionally
concatenated with v. afile is the archive file. The names
are constituent files in the archive file. The meanings of
the key characters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the
archive file does not exist, r will create it. If the named
files are not in the archive file, they are appended.

p prints a table of contents of the archive file. If no
names are given, all files in the archive are tabled. If
names are given, only those files are tabled.

u is similar to r except that only those files that have
been modified are replaced. If no names are given, all files
in the archive that have been modified will be replaced by
the modified version.

x will extract the named files. If no names are given, all
files in the archive are extracted. In neither case does x
alter the archive file.

v means verbose. Under the verbose option, ar gives a file—
by—file description of the making of a new archive file from
the old archive and the constituent files. The following
abbreviations are used:

c copy
a append
d delete
r replace
x extract

FILES /tmp/vtma, vtmb ... temporary

SEE ALSO ld

DIAGNOSTICS “Bad usage”, “afile -- not in archive format”,
“cannot open temp file”, “name -- cannot open",

11/3/71 AR (I)

“name -- phase error”, “name -- cannot create", “no archive
file”, “cannot create archive file”, “name -- not found”.

BUGS Option l (table with more information) should be
implemented.

There should be a way to specify the placement of a new file
in an archive. Currently, it is placed at the end.

OWNER ken, dmr

11/3/71 AS (I)
NAME as -- assembler

SYNOPSIS as name1 . . .

DESCRIPTION as assembles the concatenation of name1, as is based on
the DEC—provided assembler PAL—11R [references], although it
was coded locally. Therefore, only the differences will be
recorded.

Character changes are:
for use
@ *

 # $
; /

In as, the character “;“ is a logical new line; several
operations may appear on one line if separated by “;”.
Several new expression operators have been provided:
\> right shift (logical)
\< left shift
* multiplication
\/ division
% remainder (no longer means “register”)
! one’s complement
[] parentheses for grouping
^ result has value of left, type of right

For example location 0 (relocatable) can be written "0^.";
another way to denote register 2 is “2^r0"

All of the preceding operators are binary; if a left operand
is missing, it is taken to be 0. The ! operator adds its left
operand to the one’s complement of its right operand.

There is a conditional assembly operation code different from
that of PAL-11R (whose conditionals are not provided):

.if expression

...
.end if

If the expression evaluates to non-zero the section of code
between the “.if” and the .endif is assembled; otherwise it
is ignored. “.if” s may be nested.

Temporary labels like those introduced by Knuth [reference]
may be employed. A temporary label is defined as follows:

11/3/71 AS (I)

n:

where n is a digit 0 ,.. 9. Symbols of the form “nf” refer to
the first label n: following the use of the symbol; those of
the form nb refer to the last “n:”. The same n may be used
many times. Labels of this form are less taxing both on the
imagination of the programmer and on the symbol table space
of the assembler.
The PAL-11R opcodes “.eot” and “.end” are redundant and are

omitted.
The symbols

r0 ... r5
sp
pc
ac
mq
div
mul
lsh
ash
nor
csw

are redefined with appropriate values. The symbol csw refers
to the console switches. “..” is the relocation constant and
is added to each relocatable symbol; normally it is 40000(8);
it may be changed to assemble a section of code at a location
different from that in which it will be executed.

It is illegal to assign a value to “.”less than its current
value.

The new opcode “sys” is used to specify system calls. Names
for system calls are predefined. See the section on system
calls for their names.

Strings of characters may be assembled in a way more
convenient than PAL-11's “.ascii” operation (which is,
therefore, omitted). Strings are included between the string
quotes '<' and '>' :

<here is a string>

Escape sequences exist to enter non graphic and other
difficult characters. These sequences are also effective in
single and double character constants introduced by single
(') and double (“) quotes respectively.

11/3/71 AS (I)

use for
\n newline (012)
\0 NULL (000)
\> >
\t TAB (011)
\\ \

The binary output of the assembler is placed on the file
a.out in the current directory. a.out also contains the
symbol table from the assembly and relocation bits. The
output of the assembler is executable immediately if the
assembly was error—free and if there were no unresolved
external references. The link editor ld may be used to
combine several assembly outputs and resolve global symbols.

The multiple location counter feature of PALIIR is not
supported.

The assembler does not produce a listing of the source
program. This is not a serious drawback; the debugger db
discussed below is sufficiently powerful to render a printed
octal translation of the source unnecessary.

FILES /etc/as2 pass 2 of the assembler
a.tmpl temporary
a.tmp2 temporary
a.tmp3 temporary
a.out object

SEE ALSO ld, nm, sh, un, db, a.out (format of output)

DIAGNOSTICS When an input file cannot be read, its name followed by a
question mark is typed and assembly ceases.

When syntactic or semantic errors occur, a single—character
diagnostic is typed out together with the line number and the
file name in which it occurred. Errors in pass I cause
cancellation of pass 2. The possible errors are:

) parentheses error] parentheses error
* Indirection (“*") used illegally
A error in Address
B Branch instruction has too remote an address
E error in Expression
F error in local (or “b”) type symbol
G Garbage (unknown) character
M Multiply defined symbol as label
0 Odd—— word quantity assembled at odd

11/3/71 AS (I)

address
P Phase error “ ..” different in pass 2 from pass 1

value
R Relocation error
U Undefined symbol
X syntaX error

BUGS Symbol table overflow is not checked.

OWNER dmr

11/3/71 B (I)
NAME B -- language

SYNOPSIS sh rc /usr/b/rc name

DESCRIPTION B is a language suitable for system programming. It is
described is a separate publication B reference manual.

The canned shell sequence in /usr/b/rc will compile the
program name.b into the executable file a.out. It involves
running the B compiler, the B assembler, the assembler and
the link editor. The process leaves the files name.i and
name.s in the current directory.

FILES name.b, name.i, name.s.

SEE ALSO /etc/bc, /etc/ba, /etc/brtl, /etc/brt2, /etc/bilib,
/etc/libb.a, B reference manual.

DIAGNOSTICS see B reference manual

BUGS There should be a B command.

OWNER ken, dmr

11/3/71 BAS (I)

NAME bas —— basic

SYNOPSIS bas [file]

DESCRIPTION bas is a dialect of basic. If a file argument is provided,
the file is used for input before the console is read.

bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements)
are stored for later execution. They are stored in sorted
ascending order. Non— numbered statements are immediately
executed. The result of an immediate expression statement
(that does not have ‘=‘ as its highest operator) is printed.

Statements have the following syntax: (expr is short for
expression)

expr
The expression is executed for its side effects
(assignment or function call) or for printing as
described above.

done
Return to system level.

draw expr expr expr
draw is used to draw on a 611—type storage scope
through a TSP—i plotter interface. The coordinates of
the scope face are zero to one in both the x and y
directions. (Zero,zero being the lower left corner.)
The expressions are evaluated and design at— ed X, Y,
and Z. A line is drawn from the previous X, Y to the

new X, Y • If Z is non—zero, the line is visible,
otherwise the line is invisible.

for name = expr expr statement
for name = expr expr

.. .

next
The for statement repetatively executes a statement
(first form) or a group of statements (second form)
under control of a named variable. The variable takes
on the value of the first expression, then is
incremented by one on each loop, not to exceed the
value of the second expression.

11/3/71 BAS (I)

goto expr

The expression is evaluated, truncated to an integer
and execution goes to the corresponding integer
numbered statement. If executed from immediate mode,
the internal statements are compiled first.

if expr statement
The statement is executed if the expression
evaluates to non—zero.

list [expr [expr]]
list is used to print out the stored internal
statements. If no arguments are given, all internal
statements are printed. If one argument is given, only
that internal statement is listed. If two arguments
are given, all internal statements inclusively between
the arguments are printed.

print expr
The expression is evaluated and printed.

return expr
The expression is evaluated and the result is passed
back as the value of a function call.

run
The internal statements are compiled. The symbol table
is re—initialized. The random number generator is re—
set. Control is passed to the lowest numbered internal
statement.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are
composed of a letter (‘a’ — ‘z’) followed by letters
and digits. The first four characters of a name are
significant.

number
A number is used to represent a constant value. A
number is composed of digits, at most one decimal
point (’.’) and possibly a scale factor of the form e
digits or e— digits.

 (expr)
Parentheses are used to alter normal order
of evaluation.

expr op expr
Common functions of two arguments are

11/3/71 BAS (I)

abbreviated by the two arguments separated by an
operator denoting the function. A complete list of
operators is given below.

expr ([expr [, expr]]
Functions of an arbitrary number of arguments can be

called by an expression followed by the arguments in
parentheses separated by commas. The expression
evaluates to the line number of the entry of the
function in the internally stored statements. This
causes the internal statements to be compiled. If the
expression evaluates negative, an builtin function is
called. The list of builtin functions appears below.

name [expr [, expr ...]]
Arrays are not yet implemented.

The following is the list of operators:

= is the assignment operator. The left operand must be
a name or an array element. The result is the right
operand. Assignment binds right to left, all other
operators bind left to right.

& |
& (logical and) has result zero if either of its
arguments are zero. It has result one if both its
arguments are non—zero. | (logical or) has result
zero if both of its arguments are zero. It has result
one if -either of its arguments are non—zero.

< <= > >= == <>
The relational operators (< less than, <= less than or
equal, > greater than, >= greater than or equal, ==
equal to, <> not equal to) return one if their
arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level
extend as follows: a>b>c is the same as a>b&b>c.

+ -

Add and subtract.

* /
Multiply and divide.
^

Exponeniation.

11/3/71 BAS (I)

-The following is a list of builtin functions:

arg
Arg(i) is the value of the ith actual parameter on the
current level of function call.

exp
Exp(x) is the exponential function of x.

log
Log(x) is the logarithm base of x.

sin
Sin(x) is the sine of x (radians).

co s
Cos(x) is the cosine of x (radians).

atn
Atn(x) is the arctangent of x. (Not implemented.)

md
Rnd() is a uniformly distributed random
number between zero and one.

expr
Expr() is the only form of program input. A line is
read from the input and evaluated as an expression.
The resultant value is returned.

int
Int(x) returns x truncated to an integer.

FILES /tmp/btma, btmb •.. temporary

SEE ALSO

DIAGNOSTICS Syntax errors cause the incorrect line to be typed with an
underscore where the parse failed. All other diagnostics are
self explanatory.

BUGS Arrays [] are not yet implemented. In general, program
sizes, recursion, etc are not checked, and cause trouble.

OWNER ken

11/3/71 BCD (I)

NAME bcd — binary coded decimal conversion

SYNOPSIS bcd [string]

DESCRIPTION bcd will convert a string into GECOS card code. If no
argument string is provided, will read a line and convert
it.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER dmr

11/3/71 BOOT (I)

NAME boot -- reboot system

SYNOPSIS /etc/boot

DESCRIPTION boot logically a command, and is kept in /etc only to lessen
the probability of its being invoked by accident or from
curiosity. It reboots the system by jumping to the read—only
memory, which contains a disk boot program.

FILES

SEE ALSO boot procedure

DIAGNOSTICS

BUGS Should obviously not be executable by the general user.
Also, it should reboot in a more direct manner. The
mechanism invoked by jumping to the ROM loader is sensitive
to the contents of the console switches, which makes the
whole procedure even more dangerous.

Rather than jumping to the ROM, boot should simulate the ROM
action with 173700 in the switches. In this manner, It may
be used when the switches are not. set, and even in
installation without a ROM.

OWNER ken

11/3/71 CAT (I)

NAME cat -- concatenate and print

SYNOPSIS cat file1 ...

DESCRIPTION cat reads each file in sequence and writes it on the
standard output stream. Thus:

cat file

is about the easiest way to print a file. Also:

cat filel file2 >file3

is about the easiest way to concatenate files.

If no input file is given cat reads from the standard input
file.

FILES

SEE ALSO pr, cp

DIAGNOSTICS none; if a file cannot be found it is ignored.

BUGS

OWNER ken, dmr

11/3/71 CEDIR (I)

NAME chdir -- change working directory

SYNOPSIS chdir directory

DESCRIPTION directory becomes the new working directory.

Because a new process is created to execute each command,
chdir would be ineffective if it were written as a normal
command. It is therefore recognized and executed by the
Shell.

FILES

SEE ALSO sh

DIAGNOSTICS ?

BUGS

OWNER ken, dmr

11/3/71 CHECK (I)

NAME check -- file system consistency check

SYNOPSIS check [filesystem [[blockno1 ...]]

DESCRIPTION check will examine a file system, build a bit map of used
blocks, and compare this bit map against the bit map
maintained on the file system. If the file system is not
specified, a check of both /dev/rf0 and /dev/rk0 is
performed. Output includes the number of files on the file
system, the number of these that are ‘large’, the number of
used blocks, and the number of free blocks.

FILES /dev/rf0, /dev/rk0

SEE ALSO find

DIAGNOSTICS Diagnostics are produced for blocks missing, duplicated, and
bad block addresses. Diagnostics are also produced for block
numbers passed as parameters. In each case, the block
number, i—number, and block class (i = inode, x indirect, f
free) is printed.

BUGS The checking process is two pass in nature. If checking is
done on an active file system, extraneous diagnostics may
occur.

The swap space on the RF file system is not accounted for
and will therefore show up as ‘missing’.

OWNER ken, dmr

11/3/71 CHMOD (I)

NAME chmod -- change mode

SYNOPSIS chmod octal file

DESCRIPTION The octal mode replaces the mode of each of the files. The
mode is constructed from the OR of the following modes:

01 write for non—owner
02 read for non—owner
04 write for owner
10 read for owner
20 executable
40 set—UID

Only the owner of a file may change its mode.

FILES

SEE ALSO stat, ls

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 CHOWN (I)

NAME chown -- change owner

SYNOPSIS chown owner file

DESCRIPTION owner becomes the new owner of the files. The owner may be
either a decimal UID or a name found in /etc/uids.

Only the owner of a file is allowed to change the owner. It
is illegal to change the owner of a file with the set—user—
ID mode.

FILES /etc/uids

SEE ALSO stat

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 CMP (I)

NAME cmp -- compare two files

SYNOPSIS cmp file1 file2

DESCRIPTION The two files are compared for identical contents.
Discrepancies are noted by giving the offset and the
differing words.

FILES

SEE ALSO

DIAGNOSTICS Messages are given for inability to open either argument,
premature EOF on either argument, and incorrect usage.

BUGS If the two files differ in length by one byte, the extra
byte does not enter into the comparison.

OWNER dmr

11/3/71 CP (I)

NAME cp -- copy

SYNOPSIS cp file12 file12 file21 file22 ...

DESCRIPTION Files are taken in pairs; the first is opened for reading,
the second created mode 17. Then the first is copied into
the second.

FILES

SEE ALSO cat, pr

DIAGNOSTICS Error returns are checked at every system call, and
appropriate diagnostics are produced.

BUGS The second file should be created in the mode of the first.

A directory convention as used in mv should be adopted to cp.

OWNER ken, dmr

11/3/71 DATE (I)

NAME date -- print the date

SYNOPSIS date

DESCRIPTION The current date is printed to the second.

FILES

SEE ALSO sdate

DIAGNOSTICS

BUGS

OWNER dmr

11/3/71 DB (I)

NAME db -- debug

SYNOPSIS db [core [namelist]]

DESCRIPTION Unlike many debugging packages (including DEC’s ODT, on which
db is loosely based) db is not loaded as part of the core
image which it is used to examine; instead it examines files.
Typically, the file will be either a core image produced
after a fault or the binary output of the assembler. Core is
the file being debugged; if omitted "core" is assumed.
namelist is a file containing a symbol table. If it is
omitted, a.out is the default. If no appropriate name list
file can be found, db can still be used but some of its
symbolic facilities become unavailable.

The format for most db requests is an address followed by a
one character command.

Addresses are expressions built up as follows:

1. A name has the value assigned to it when the input
file was assembled. It may be relocatable or not
depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the
appropriate value.

3. An octal number immediately followed by "r" is a
relocatable quantity with the appropriate value.

4. The symbol "." indicates the current pointer of db.
The current pointer is set by many requests.

5. Expressions separated by “+“ or " "(blank) are
expressions with value equal to the sum of the
components. At most one of the components may be
relocatable.

6. Expressions separated by "—“ form an expression with
value equal to the difference to the components. If
the right component is relocatable, the left
component must be relocatable.

7. Expressions are evaluated left to right. Names for
registers are built in:

r0 ... r5
sp
pc

11/3/71 DB (I)

ac
mq

These may be examined. Their values are deduced from the
contents of the stack in a core image file. They are
meaningless in a file that is not a core image.

If no address is given for a command, the current address
(also specified by ".") is assumed. In general, . points to
the last word or byte printed by ~.

There are db commands for examining locations interpreted as
octal numbers, machine instructions, ASCII characters, and
addresses. For numbers and characters, either bytes or words
may be examined. The following commands are used to examine
the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII
characters.

' The addressed byte is printed as an ASCII character.

‘ The addressed word is multiplied by 2, then printed in
octal (used with B programs,
whose addresses are word addresses).

? The addressed word is interpreted as a machine
instruction and a symbolic form of the instruction,
including symbolic addresses, is printed. Usually, the
result will appear exactly as it was written in the
source program.

& The addressed word is interpreted as a symbolic
address and is printed as the name of the symbol whose
value is closest to the addressed word, possibly
followed by a signed offset.

<nl> (i. e., the character “new line”) This command

advances the current location counter • and prints the
resulting location in the mode last specified by one
of the above requests.

This character decrements "." and prints the resulting
location in the mode last selected one of the above
requests. It is

11/3/71 DB (I)

a converse to <nl>.

It is illegal for the word—oriented commands to have odd
addresses. The incrementing and decrementing of "." done by
the <nl> and requests is by one or two depending on whether
the last command was word or byte oriented.

The address portion of any of the above commands may be
followed by a comma and then by an expression. In this case
that number of sequential words or bytes specified by the
expression is printed. "."is advanced so that it points at
the last thing printed.

There are two commands to interpret the value of
expressions.

= When preceded by an expression, the value of the
expression is typed in octal. When not preceded by an
expression, the value of. "." is indicated. This
command does not change the value of ".".

: An attempt is made to print the given expression as a
symbolic address. If the expression is relocatable,
that symbol is found whose value is nearest that of
the expression, and the symbol is typed, followed by a
sign and the appropriate offset. If the value of the
expression is absolute, a symbol with exactly the
indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the
expression is given.

The following command may be used to patch the file being
debugged.

! This command must be preceded by an expression. The
value of the expression is stored at the location
addressed by the current value of "." . The opcodes do
not appear in the symbol table, so the user must
assemble them by hand.

The following command is used after a fault has caused a core
image file to be produced.

$ causes the contents of the general registers and
several other registers to be printed both in octal
and symbolic format. The values are as they were at
the time of the fault.

11/3/71 DB (I)

The only way to exit from db is to generate an end of file
on the typewriter (EOT character).

FILES

SEE ALSO as; core for format of core image.

"

DIAGNOSTICS "File not found" the first argument cannot be read;
otherwise "?"

BUGS Really, db should know about relocation bits, floating point
operations, and PDP11/45 instructions.

OWNER dmr

11/3/71 DBPPT (I)

NAME dbppt -- dump binary paper tape

SYNOPSIS dbppt name [output]

DESCRIPTION dbppt produces binary paper tape in UNIX standard format,
which includes checksums and a zero—suppression feature.
File name is dumped; if the output argument is not given,
output goes to /dev/ppt.

FILES /dev/ppt

SEE ALSO lbppt to reload the tapes. bppt for binary paper tape
format.

DIAGNOSTICS ?

BUGS

OWNER ken

11/3/71 DC (I)

NAME dc -- desk calculator

SYNOPSIS dc

DESCRIPTION dc is an arbitrary precision integer arithmetic package.
The overall structure of dc is a stacking (reverse Polish)
calculator. The following constructions are recognized by
the calculator:

number
The value of the number is pushed on the stack. If the
number starts with a zero, it is taken to be octal,
otherwise it is decimal.

+ - * / %
The top two values on the stack are added (±), subtracted

(—), multiplied (*), divided (*) or remaindered (%) The

two entries are popped off of the stack, the result is

pushed on the stack in their place.

sx

The top of the stack is popped and stored into a

register named x, where x may be any character.

lx

The value in register x is pushed on the

stack. The register x is not altered.

d

The top value on the stack is pushed on the

stack. Thus the top value is duplicated.

p

The top value on the stack is printed in decimal. The

top value remains unchanged.

f

All values on the stack are popped off and

printed in decimal.

r

All values on the stack are popped.

q

exit.

h

print brief synopsis of commands to dc.

new—line

space

 ignored.

An example to calculate the monthly, weekly and

11/3/71 DC (I)

hourly rates for a $10,000/year salary.
10000

100* (now in cents)
dsa (non—destructive store)
12/ (pennies per month)
1a52/ (pennies per week)
dl0* (deci—pennies per week)
375/ (pennies per hzur)
f (print all results)
(3) 512
(2) 19230
(1) 83333

FILES

SEE ALSO

DIAGNOSTICS ? (x) for unrecognized character x.

BUGS % doesn’t work correctly.

OWNER ken

11/3/71 DF (I)

NAME df -- disk free

SYNOPSIS df [filesystem]

DESCRIPTION prints out the number of free blocks available on a file
system. If the file system is unspecified, the free space
on /dev/rf0 and /dev/rk0 is printed.

FILES /dev/rf0, /dev/rk0

SEE ALSO check

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 DSW (I)

NAME dsw -- delete interactively

SYNOPSIS dsw [directory]

DESCRIPTION For each file in the given directory ("." if not specified)
dsw types its name. If y is typed, the file is deleted; if
"x", dsw exits; if anything else, the file is not removed.

FILES
SEE ALSO rm

DIAGNOSTICS “?”

BUGS The name dsw is a carryover from the ancient past. Its
etymology is amusing but the name is nonetheless ill—
advised.

OWNER dmr, ken

11/3/71 DTF (I)

NAME dtf -- DECtape format

SYNOPSIS /etc/dtf

DESCRIPTION dtf will write timing tracks, mark tracks and
block numbers on a virgin DECtape. The format is
DEC standard of 578 blocks of 256 words each.
The end zones are a little longer than standard DEC.

Before use, the tape to be formatted should be mounted on
drive 0. The ‘wall’ and ‘wtm’ switches should be enabled.
After the tape is formatted, the switches should be
disabled to prevent damage to subsequent tapes due to a
controller logic error.

FILES

SEE ALSO sdate

DIAGNOSTICS “?“ is typed for any error detected.

BUGS This program does physical I/O on drive 0. The processor
priority is set very high due to very stringent real time
requirements. This means that all time sharing activities
are suspended during the formatting (about 1.5 minutes) The
real time clock will also be slow.

OWNER ken

11/3/71 DU (I)

NAME du -- summarize disk usage

SYNOPSIS du [—s] [—a] [name...]

DESCRIPTION du gives the number of blocks contained in all
files and (recursively) directories within each
specified directory or file name. If name is missing, "."
is used.

The optional argument —s causes only the grand total to be
given. The optional argument —a causes an entry to be
generated for each file. Absence of either causes an entry
to be generated for each directory only.

A file which has two links to it is only counted once.
FILES /

SEE ALSO

DIAGNOSTICS

BUGS Files at the top level (not under —a option) are not
listed.

Removable file systems do not work correctly since i—
numbers may be repeated while the corresponding files are
distinct. Du should maintain an i—number list per root
directory encountered.

OWNER dmr

11/3/71 ED (I)

NAME ed -- editor

SYNOPSIS ed [name]

DESCRIPTION ed is the standard text editor. ed is based on QED
[reference] but is fully if succinctly described here.
Differences between ed and QED are also noted to simplify
the transition to the less powerful editor.

If the optional argument is given, simulates an e command
on the named file; that is to say, the file is read into
ed’s buffer so that it can be edited.

ed operates on a copy of any file it is editing; changes
made in the copy have no effect on the file until an
explicit write (w) command is given. The copy of the text
being edited resides in a temporary file called the buffer.
There is only one buffer.

Commands to ed have a simple and regular structure: zero or
more addresses followed by a single character command,
possibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Every
command which requires addresses has default addresses, so
that the addresses can often be omitted.

In general only one command may appear on a line. Certain
commands allow the input of text. This text is placed in
the appropriate place in the buffer. While ed is accepting
text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected.
Input mode is left by typing a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation.
A regular expression is an expression which specifies a set
of strings of characters. A member of this set of strings
is said to be matched by the regular expression. The
regular expressions allowed by are constructed as follows:

1 . An ordinary character (not one of those
discussed below) is a regular expression
and matches that character.

2. A circumflex (^) at the beginning of a regular
expression matches the null character
at the beginning of a line.

11/3/71 ED(I)

3. A currency symbol ($) at the end of a regular
expression matches the null character
at the end of a line.

4. A period (.) matches any character but a new—line
character.

5. A regular expression followed by an asterisk (*)
matches any number of adjacent occurrences
(including zero) of the regular expression it
follows.

6. A string of characters enclosed in square brackets
([]) matches any character in the string but no
others. If, however, the first character of the
string is a circumflex (^) the regular expression
matches any character but new—line and the
characters in the string.

7. The concatenation of regular expressions is a
regular expression which matches the concatenation
of the strings matched by the components of the
regular expression.

8. The null regular expression standing alone is
equivalent to the last regular expression
encountered.

Regular expressions are used in addresses to specify lines
and in one command (s, see below) to specify a portion of a
line which is to be replaced.

If it is desired to use one of the regular expression
metacharacters as an ordinary character, that character may
be preceded by “\“. This also applies to the character
bounding the regular expression (often “/“) and to \
itself.

Addresses are constructed as follows. To understand
addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current
line is the last line affected by a command; however, the
exact effect on the current line by each command is
discussed under the description of the command.

1. The character "." addresses the current line.
2. The character “$“ addresses the last line of the

buffer.
3. A decimal number n addresses the nth line

of the buffer.

11/3/71 ED (I)

4. A regular expression enclosed in slashes "/“
addresses the first line found by searching toward
the end of the buffer and stopping at the first
line containing a string matching the regular
expression. If necessary the search wraps around to
the beginning of the buffer.

5. A regular expression enclosed in queries "?“
addresses the first line found by searching toward
the beginning of the buffer and stopping at the
first line found containing a string matching the
regular expression. If necessary the search wraps
around to the end of the buffer.

6. An address followed by a plus sign "+" or a minus
sign "—" followed by a decimal number specifies
that address plus (resp. minus) the indicated
number of lines. The plus sign may be omitted.

Commands may require zero, one, or two addresses. Commands
which require no addresses regard the presence of an
address as an error. Commands which require the presence of
one address all assume a default address (often ".") but if
given more than one address ignore any extras and use the
last given. Commands which require two addresses have
defaults in the case of zero or one address but use the
last two if more than two are given.

Addresses are separated from each other typically by a
comma (,). They may also be separated by a semicolon ";".
In this case the current line is set to the the previous
address before the next address is interpreted. This
feature is used to control the starting line for forward
and backward searches ("/", "?").

In the following list of ed commands, the default addresses
are shown in parentheses. The parentheses are not part of
the address, but are used to show that the given addresses
are the default.

As mentioned, it is generally illegal for more than one
command to appear on a line. However, any command may be
suffixed by “p” (for “print). In that case, the current
line is printed after the command is complete.

In any two—address command, it is illegal for the

11/3/71 ED (I)

first address to lie after the second address.
(.)a
<text>

.

The append command reads the given text and appends
it after the addressed line "."
is left on the last line input, if there were any,
otherwise at the addressed line. Address "0" is
legal for this command; text is placed at the
beginning of the buffer. (NOTE: the default address
differs from that of QED.)

(.,.c)
(text>

.

The change command deletes the addressed lines, then
accepts input text which replaces these lines. "."
is left at the last line input; if there were none,
it is left at the first line not changed.

(.,.)d
The delete command deletes the addressed lines from
the buffer. "." is left at the first line not
deleted.

e filename
The edit command causes the entire contents of the
buffer to be deleted. and then the named file to be
read in. "." is set to the last line of the buffer.
The number of characters read is typed.

(1 ,s)g/regular expression/command
In the global command, the first step is to mark
every line which matches the given regular
expression. Then for every such line, the given
command is executed with "." set to that line. The
repeated command cannot be a, g, i, or c.

(.)i
<text>

.

This command inserts given text before the addressed
line. "." is left at the last line input; if there
were none, at the addressed line. This command
differs from the a command only in the placement of
the text.

(.,.)l
The list command prints the addressed lines
in an unambiguous way. Non—printing

11/3/71 ED (I)

characters are over—struck as follows:
char prints
bs [overstruct - \]
tab [overstruct - >]
ret [overstruct - <]
SI [overstruct I -]
SO [overstruct O -]

All characters preceded by a prefix (ESC) character
are printed over—struck with without the prefix.
Long lines are folded with the sequence \newline.

(.,.p)
The print command prints the addressed lines. . is
left at the last line printed

q
The quit command causes ed to exit. No
automatic write of a file is done.

($)r filename
The read command reads in the given file after the
addressed line. If no file name is given, the file
last mentioned in e, r, or w commands is read.
Address "0" is legal for r and causes the file to
be read at the beginning of the buffer. If the read
is successful, the number of characters read is
typed."." is left at the last line of the file.

(.,.)s/regular expression/replacement/
The substitute command searches each addressed line for

an occurence of the specified regular expression.
On each line in which a match is found, the first
(and only first, compare QED) matched string is
replaced by the replacement specified. It is an
error for the substitution to fail on all addressed
lines. Any character other than space or new—line
may be used instead of "/" to delimit the regular
expression and the replacement. "." is left at the
last line substituted.

The ampersand "&" appearing in the replacement is
replaced by the regular expression that was
matched. The special meaning of "&" in this context
may be suppressed by preceding it by “\".

(1,$)w filename
The write command writes the addressed lines onto
the given file. If no file name is given, the file
last named in e, r, or w

11/3/71 ED (I)

commands is written. "." is unchanged. If the
command is successful, the number of characters
written is typed. The line number of the addressed
line is typed. . is unchanged by this command.

($)=
The line number of the addressed line is typed. "."
is unchanged by this command.

!UNIX command
The remainder of the line after the "!" is sent to
UNIX to be interpreted as a command. "."is
unchanged.

(newline>
A blank line alone is equivalent to ".+lp";
it is useful for stepping through text.

Ed can edit at most 1500 lines and the maximum size of a
line is 256 characters, The differences between ed and QED
are:

1. There is no \f character; input mode is left by
typing . alone on a line.

2. There is only one buffer and hence no stream
directive.

3. The commands are limited to:

a c d e g i l p q r s w = !

where e is new.

4. The only special characters in regular expressions
are:

* ^ $ [.

which have the usual meanings. However, "^" and "$"
are only effective if they are the first or last
character respectively of the regular expression.
Otherwise suppression of special meaning is done by
preceding the character by “\ , which is not
otherwise special.

5. In the substitute command, only the leftmost
occurrence of the matched regular
expression is substituted.

7. The a command has a different default address.

FILES /tmp/etma, etmb, ... temporary
/etc/msh is used to implement the "!" command.

11/3/71 ED (I)

SEE ALSO

DIAGNOSTICS ? for any error

BUGS ed is used as the shell for the editing system. It has the
editing system UID built in and if invoked under this UID
will give slightly different responses. This is a little
kludgy.

OWNER ken

11/3/71 FIND (I)

NAME find -- find file with given name

SYNOPSIS find name or number

DESCRIPTION find searches the entire file system hierarchy and gives
the path names of all files with the specified names or
(decimal) i—numbers.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER dmr

11/3/71 FOR (I)

NAME for -- fortran

SYNOPSIS for file

DESCRIPTION for is a nearly complete fortran compiler. file is the name
of a fortran source program to be compiled. The following
is a list of differences between for and ANSI standard
fortran:

1. arbitrary combination of types are allowed in
expressions. Not all combinations are expected to be
supported in runtime. All of the normal conversions
involving integer, real and double precision are
allowed.

FILES f.tmpl, 2 3 temporary
/etc/f1, 2 3 4 passes
/etc/xx runtime

SEE ALSO

DIAGNOSTICS Diagnostics are given by number. If the source code is
available, it is printed with an underline at the current
character pointer. A listing of error numbers is
available.

BUGS The following is a list of those features not yet
implemented: functions, arithmetic statement functions.
data statements, complex constants, hollerith constants,
continuation cards

OWNER dmr, ken

11/3/71 FORM (I)

NAME form -- form letter generator

SYNOPSIS form proto arg1 ...

DESCRIPTION form generates a form letter from a prototype letter, an
associative memory, arguments and in a special case, the
current date.

If form is invoked with the argument x, the following
files come into play:

x.f prototype input
x.r form letter output
x.am associative memory
form.am associative memory if x.am not found.

Basically, form is a copy process from the file x.f to the
file x.r. If an element of the -form \n (where n is a digit
from 1 to 9) is encountered, The nth argument is inserted
in its place, and that argument is then rescanned. If \0 is
encountered, the current date is inserted. If the desired
argument has not been given, a message of the form "\n:" is
typed. The response typed in then is used for that
argument.

If an element of the form [name] is encountered, the name
is looked up in the associative memory. If it is found,
the contents of the memory under this name replaces the
original element (again rescanned.) If the name is not
found, a message of the form "name: " is typed. The
response typed in is used for that element. If the
associative memory is writable, the response is entered in
the memory under the name. Thus the next search for that
name will succeed without interaction.

In both of the above cases, the response is typed in by
entering arbitrary text terminated by two new lines. Only
the first of the two new lines is passed with the text.
The process is instantly terminated if an end of file is
encountered anywhere except in the associative memory.

FILES x.f input file
x.r output file
x.am associative memory
form.am associative memory

SEE ALSO type

DIAGNOSTICS "settup error” when the appropriate files cannot be
located or created.

BUGS "settup" is misspelled.

11/3/71 FORM (I)

OWNER rhm, ken

11/3/71 HUP (I)

NAME hup -- hang up typewriter

SYNOPSIS hup

DESCRIPTION hup hangs up the phone on the typewriter which uses it.

FILES

SEE ALSO

DIAGNOSTICS

BUGS should not be used; sometimes causes the typewriter channel
to be lost.

OWNER dmr, ken

11/3/71 LBPPT (I)

NAME lbppt -- load binary paper tapes

SYNOPSIS lbppt output [input]

DESCRIPTION lbppt loads a paper tape in standard UNIX binary paper
tape format. It is used to bring files to a UNIX
installation. Currently there is a GECOS program to
prepare a GECOS file in binary paper tape format.

If the input file is specified, the character stream from
that input is expected to be in UNIX binary paper tape
format. If it is not present, /dev/ppt is assumed. The
input stream is interpreted, checksummed, and copied to the
output file.

FILES /dev/ppt

SEE ALSO dbppt, bppt format

DIAGNOSTICS "checksum"; "usage:"; "read error".

BUGS

OWNER ken

11/3/71 LD (I)

NAME ld -- link editor

SYNOPSIS ld [—usaol] name1]

DESCRIPTION ld combines several object programs into one; resolves
external references; and searches libraries. In the
simplest case the names of several object programs are
given, and ld combines them, producing an object module
which can be either executed or become the input for a
further ld run.

The argument routines are concatenated in the order
specified. The entry point of the output is the beginning
of the first routine.

If any argument is a library, it is searched, and only
those routines defining an unresolved external reference
are loaded. If any routine loaded from a library refers to
an undefined symbol which does not become defined by the
end of the library, the library is searched again. Thus the
order of libraries primarily affects the efficiency of
loading, not what routines get loaded.

ld understands several flag arguments which are written
preceded by a "—"

—s "squash" the output, that is, remove the symbol
table and relocation bits to save space (but impair
the usefulness of the debugger). This information
can also be removed by strip.

—u take the following argument as a symbol and enter it
as undefined in the symbol table. This is useful for
loading wholly from a library, since initially the
symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

—o set the origin of the load to the octal number which
is given as the next argument. This option affects
only the definition of relocatable external symbols.
See DMR before using.

—l This option is an abbreviation for a library
name. "-l" alone stands for "/etc/liba.a", which is
the standard system library for assembly language
programs. "-lx" stands for /etc/libx.a where x is
any character. There are libraries for Fortran
(x=”f”) and B (x=”b”).

11/3/71 LD (I)

—a means absolute” (load at origin absolute
0) but it doesn’t work.

The output of ld is left on a.out. This file is executable
only if no errors occurred during the load.

FILES /etc/libx.a, for various x;
/etc/ltma, ltmb, ... (temporary)
a.out (output file)

SEE ALSO as, strip, ar (maintains libraries)

DIAGNOSTICS "can't create temp file”—— unwritable directory
or someone else is using ld in the same directory.

"can't open temp file" -- maybe someone has deleted it out
from under you.

"file not found" -- bad argument

"bad format" -- bad argument

"relocation error" -- bad argument (relocation bits
corrupted)

"bad relocation" -- user error: a relocatable
reference to an external symbol that turns out to be
absolute.

“multiply defined" -- same symbol defined twice in same
load

"un" -- stands for undefined symbol

"symbol not found" —— loader bug

BUGS Option "-a" doesn't work at all; option "-o" doesn't work
right.

OWNER dmr

11/3/71 LN (I)

NAME ln -- make a link

SYNOPSIS ln name1[name2]

DESCRIPTION ln creates a link to an existing file name1. If name2 is
given, the link has that name; otherwise it is placed in
the current directory and its name is the last component
of name1.

It is forbidden to link to a directory or to link across
file systems.

FILES

SEE ALSO rm, to unlink

DIAGNOSTICS "?"

BUGS There is nothing particularly wrong with ln, but links
don’t work right with respect to the backup system: one
copy is backed up for each link, and (more serious) in
case of a file system reload both copies are restored and
the information that a link was involved is lost.

OWNER ken, dmr

11/3/71 LS (I)

NAME ls -- list contents of directory

SYNOPSIS ls [-ltasd] name1 ...

DESCRIPTION ls lists the contents of one or more directories under
control of several options:

1 list in long format, giving i—number, mode, owner,
size in bytes, and time of last modification for
each file. (see stat for format of the mode)

t sort by time modified (latest first) instead of by
name, as is normal

a list all entries; usually those beginning with "."
are suppressed

s give size in blocks for each entry

d if argument is a directory, list only its
name, not its contents (mostly used with
—l to get status on directory)

If no argument is given, "." is listed. If an argument is
not a directory, its name is given.

FILES /etc/uids to get user ID’s for ls —l

SEE ALSO stat

DIAGNOSTICS "name nonexistent"; "name unreadable"; "name unstatable".

BUGS In ls -l, when a user cannot be found in /etc/uids, the
user number printed instead of a name is incorrect. It is
correct in stat.

OWNER dmr, ken

11/3/71 MAIL (I)

NAME mail -- send mail to another user

SYNOPSIS mail [letter person ...]

DESCRIPTION mail without an argument searches for a file called
mailbox, prints it if present, asks if it should be saved.
If the answer is y , the mail is renamed mail, otherwise
it is deleted. The answer to the above question may be
supplied in the letter argument.

When followed by the names of a letter and one or more
people, the letter is appended to each person’s mailbox.
Each letter is preceded by the sender’s name and a
postmark.

A person is either the name of an entry in the directory
/usr, in which case the mail is sent to
/usr/person/mailbox, or the path name of a directory, in
which case mailbox in that directory is used.

When a user logs in he is informed of the presence of
mail.

FILES /etc/uids to map the sender’s numerical user ID to name;
mail and mailbox in various directories.

SEE ALSO init

DIAGNOSTICS "Who are you?" if the user cannot be identified for some
reason (a bug). "Cannot send to user" if mailbox cannot be
opened.

BUGS

OWNER ken

11/3/71 MESG (I)

NAME mesg -- permit or deny messages

SYNOPSIS mesg [n][y]

DESCRIPTION mesg n forbids messages via write by revoking non—user
write permission on the user’s typewriter. mesg y
reinstates permission. mesg with no argument reverses the
current permission. In all cases the previous state is
reported.

FILES /dev/ttyn

SEE ALSO write

DIAGNOSTICS "?" if the standard input file is not a typewriter

BUGS

OWNER dmr, ken

11/3/71 MKDIR (I)

NAME mkdir -- make a directory

SYNOPSIS mkdir dirname

DESCRIPTION mkdir creates directory dirname. The standard entries
"."and ".." are made automatically.

FILES

SEE ALSO mkdir to remove directories

DIAGNOSTICS "?"

BUGS No permissions are checked. The system's user ID, not that
of the creator of the directory, becomes the owner of the
directory.

OWNER ken, dmr

11/3/71 MKFS (I)

NAME mkfs -- make file system

SYNOPSIS /etc/mkfs t
/etc/mkfs r

DESCRIPTION mkfs initializes either a DECtape (argument “t”) or an
RK03 disk pack (argument "r”) so that it contains an empty
file system. mkfs or its equivalent must be used before a
tape or pack can be mounted as a file system.

In both cases the super—block, i—list, and free list are
initialized and a root directory containing entries for
"." and ".." are created. For RK03’s the number of
available blocks is 4872, for tapes 578.

This program is kept in /etc to avoid inadvertant use and
consequent destruction of information.

DIAGNOSTICS "Arg count", "Unknown argument", "Open error".

SEE ALSO

DIAGNOSTICS "Arg count", "Unknown argument", "Open error".

BUGS

OWNER ken, dmr

11/3/71 MOUNT (I)

NAME mount -- mount file system

SYNOPSIS mount special dir

DESCRIPTION mount announces to the system that a removable file system
has been mounted on the device corresponding to special
file special. Directory dir (which must exist already)
becomes the name of the root of the newly mounted file
system.

FILES

SEE ALSO umount

DIAGNOSTICS "?", if the special file is already in use, cannot be
read, or if dir does not exist.

BUGS Should be usable only by the super—user.

OWNER ken, dmr

11/3/71 MV (I)

NAME mv -- move or rename a file

SYNOPSIS my name1 name2 ...

DESCRIPTION mv changes the name of name by linking to it under the
name name2 and then unlinking name1. Several pairs of
arguments may be given. If the new name is a directory,
the file is moved to that directory under its old name.
Directories may only be moved within the same parent
directory (just renamed).

FILES

SEE ALSO

DIAGNOSTICS "?a? -- incorrect argument count
"d" -- attempt to move a directory
"s" -- moving file to itself
"l"-- link error; old file doesn’t exist or can’t write

new directory
"u" -- can’t unlink old name

BUGS If mv succeeds in removing the target file, but then in
unable to link back to the old file, the result is ?l and
the removal of the target file. This is common with
demountable file systems and should be circumvented. Also
in such cases, mv should copy if it can.

OWNER ken, dmr

11/3/71 NM (I)
NAME nm -- get name list

SYNOPSIS nm [name]

DESCRIPTION nm prints the symbol table from the output file of an
assembler or loader run. Only relocatable, global, and
undefined symbols-- not absolute-- are given. Each defined
symbol is preceded by its value; each undefined symbol by
blanks. Global symbols have their first character
underlined. The output is sorted alphabetically.

If no file is given, the symbols in a.out are listed.
FILES a.out

SEE ALSO as, ld

DIAGNOSTICS` "?"

BUGS
OWNER dmr, ken

11/3/71 OD (I)

NAME od -- octal dump

SYNOPSIS od name [origin]

DESCRIPTION od dumps a file in octal, eight words per line with the
origin of the line on the left. If an octal origin is given
it is truncated to 0 mod 16 and dumping starts from there,
otherwise from 0. Printing continues until halted by
sending an interrupt signal.

FILES

SEE ALSO db

DIAGNOSTICS

BUGS Dumping does not cease at the end of the file; instead the
file appears to be padded with garbage to a length of 511
mod 512 bytes.

OWNER ken, dxnr

11/3/71 PR (I)

NAME pr -- print file

SYNOPSIS pr [—1cm] name1 ...

DESCRIPTION produces a printed listing of one or more files. The output
is separated into pages headed by the name of the file, a
date, and the page number.

The optional flag —l causes each page to contain 78 lines
instead of the standard 66 to accommodate legal size paper.

The optional flags —c (current date) and —m (modified date)
specify which date will head all subsequent files. —m is
default.

FILES /dev/ttyn to suspend messages.

SEE ALSO cat, cp, mesg

DIAGNOSTICS -- (files not found are ignored)

BUGS none

OWNER ken, dmr

11/3/71 REW (I)

NAME rew -- rewind tape

SYNOPSIS rew [digit]

DESCRIPTION rew rewinds DECtape drives. The digit is the
logical tape number, and should range from 0 to
7. A missing digit indicates drive 0.

FILES /dev/tap0, ..., /dev/tap7

SEE ALSO

DIAGNOSTICS "?" if there is no tape mounted on the indicated drive or
if the file cannot be opened.

BUGS

OWNER ken, dmr

11/3/71 RKD (I)

NAME rkd -- dump RK disk to tape

SYNOPSIS /etc/rkd

DESCRIPTION rkd copies an RK03/RK05 disk pack onto nine DECtapes.

Physical I/O is done and interrupts are disabled, so time—
sharing is suspended during operation of the command.

The sequence of tape drives is: 0, 1, 0, 1,

rkd exits if 0 appears in the console switches.

FILES --

SEE ALSO rkl

DIAGNOSTICS none; errors are retried forever

BUGS

OWNER ken

11/3/71 RKF (I)

NAME rkf -- format RKO3 disk pack

SYNOPSIS rkf

DESCRIPTION rkf formats a virgin disk pack. Because it destroys all
information on that pack, and because it is not interlocked
against file system activity on the pack, the rkf program
is not maintained in executable form. Instead the source
must be located and assembled.

FILES none (uses physical I/O on drive 0).

SEE ALSO

DIAGNOSTICS “error” is printed and a core image is produced if a write
error occurs. A copy of the RK status register is in
register 5.

BUGS As mentioned, is not interlocked against system I/O; if I/O
is already occurring, it will be badly disrupted. In any
event, all information on the pack is destroyed.

OWNER ken, dmr

11/3/71 RKL (I)

NAME rkl -- reload RK disk from tape

SYNOPSIS /etc/rkl

DESCRIPTION rkl loads an RK03/RK05 disk pack from nine DECtapes.

The program uses physical I/O with interrupts disabled;
therefore time—sharing is suspended.

Only the super—user may invoke this command.

The sequence of drives is: 0, 1, 0, 1, rkl will cease
if 0 appears in the console switches.

FILES

SEE ALSO rkd

DIAGNOSTICS none; errors are retried forever

BUGS --

OWNER ken

11/3/71 RM (I)

NAME rm -- remove (unlink) files

SYNOPSIS’ rm name1 ...

DESCRIPTION rm removes the entries for one or more files from a
directory. If an entry was the last link to the file, the
file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write
permission on the file itself.

Directories cannot be removed by rm; cf. rmdir.

FILES none.

SEE ALSO rmdir, for removing directories.

DIAGNOSTICS If the file cannot be removed or does not exist, the name
of the file followed by a question mark is typed.

BUGS rm probably should ask whether a read—only file is really
to be removed.

OWNER ken, dmr

11/3/71 RMDIR (I)

NAME rmdir -- remove directory

SYNOPSIS rmdir dir1 ...

DESCRIPTION rmdir removes (deletes) directories. The directory must
empty (except for the standard entries "." and "..",
which rmdir itself removes). Write permission is
required in the directory in which the directory
appears.

FILES none

SEE ALSO

DIAGNOSTICS “dir?” is printed if directory dir cannot be found, is not
a directory, or is not removable.

“dir -- directory not empty" is printed if dir has entries
other than "." or "..".

BUGS
OWNER ken, dmr

11/3/71 ROFF (I)

NAME roff -- format text

SYNOPSIS roff [+number] [—number] name1 ...

DESCRIPTION roff formats text according to control lines embedded in
the text. The optional argument “+number” causes printing
to begin at the first page with the appropriate number; —
number causes printing to cease at the first page with a
higher number.

roff is fully described in a separate publication
[reference].

FILES /etc/suftab contains a list of suffixes used to guide
hyphenation. /tmp/rtma, rtmb, ... temporary /dev/ttyn to
suspend messages.

SEE ALSO [reference], mesg

DIAGNOSTICS: none -- files not found are ignored

BUGS roff does not check for various kinds of buffer overflow.
If a fault occurs, check the input in the region where the
error occurred.

OWNER jfo, dmr, ken

11/3/71 SDATE (I)

NAME sdate -- set date and time

SYNOPSIS sdate mmddhhmm

DESCRIPTION sdate adjusts the system’s idea of the date and time. mm is
the month number; dd is the day number in the month; hh is
the hour number (24—hour system); mm is the minute number.
For example,

sdate 10080045

sets the date to Oct. 8, 12:45 AM.

FILES none

SEE ALSO date

DIAGNOSTICS "?" if the date is syntactically incorrect.

BUGS none

OWNER ken, dmr

11/3/71 SH (I)

NAME sh -- shell (command interpreter)

SYNOPSIS sh [name [arg1 ... [arg9]]]

DESCRIPTION sh is the standard command interpreter. It is the program
which reads and arranges the execution of the command lines
typed by most users. It may itself be called as a command
to interpret files of command lines. Before discussing the
arguments to the shell used as a command, the structure of
command lines themselves will be given.

Command lines are sequences of commands separated by
command delimiters. Each command is a sequence of non—blank
command arguments separated by blanks. The first argument
specifies the name of a command to be executed. Except for
certain types of special arguments discussed below, the
arguments other than the command name are simply passed to
the invoked command.

If the first argument represents the path name of an
executable file, it is invoked; otherwise the string
“/bin/” is prepended to the argument. (In this way the
standard commands, which reside in "/bin," are found.) If
this search too fails a diagnostic is printed.

The remaining non—special arguments are simply passed to
the command without further interpretation by the shell.

There are three command delimiters: the new line, ";" , and
"&". The semicolon ";" specifies sequential execution of
the commands so separated; that is,

coma; comb

causes the execution first of command coma, then of comb.
The ampersand “&“ causes simultaneous execution:

coma & comb

causes coma to be called, followed immediately by comb
without waiting for coma to finish. Thus coma and comb
execute simultaneously. As a special case,

coma &

causes coma to be executed and the shell immediately to
request another command without waiting for coma.

11/3/71 SH (I)

Two characters cause the immediately following string to be
interpreted as a special argument to the shell itself, not
passed to the command. An argument of the form <arg causes
the file arg to be used as the standard input file of the
given command; an argument of the form “>arg” causes file
“arg” to be used as the standard output file for the given
command.

If any argument contains either of the characters "?" or
"*" , it is treated specially as follows. The current
directory is searched for files which match the given
argument. The character "*" in an argument matches any
string of characters in a file name (including the null
string); ? matches any single character in a file name.
Other argument characters match only the same character in
the file name. For example, "*" matches all file names; "?"
matches all one—character file names; "ab*.s" matches all
file names beginning with "ab" and ending with ".s".

If the argument with "*" or "?" also contains a "/", a
slightly different procedure is used: instead of the
current directory, the directory used is the one obtained
by taking the argument up to the last "/" before a “*“ or
"?". The matching process matches the remainder of the
argument after this "/" against the files in the derived
directory. For example:, “/usr/dmr/a*.s” matches all files
in directory /usr/dmr which begin with "a” and end with
".s"

In any event, a list of names is obtained which match the
argument. This list is sorted into alphabetical order, and
the resulting sequence of arguments replaces the single
argument containing the "*" or "?". The same process is
carried out for each argument with a * or ?“ (the resulting
lists are not merged) and finally the command is called
with the resulting list of arguments..

For example: directory /usr/dmr contains the files al • s,
a2.s, ..., a9.s. From any directory, the command

as /usr/dmr/a?.s

calls as with arguments /usr/dmr/al.s, /usr/dmr/a2.s, ...
/usr/dmr/a9.s in that order.

The character “\“ causes the immediately following
character to lose any special meaning it may have to the
shell; in this way < , , and other characters meaningful to
the shell may be passed as part of arguments. A special
case of

11/3/71 SH (I)

this feature allows the continuation of commands onto more
than one line: a new—line preceded by “\“ is translated
into a blank.

Sequences of characters enclosed in double (") or single
(') quotes are also taken literally.

When the shell is invoked as a command, it has additional
string processing capabilities. Recall that the form in
which the whell is invoked is

sh [name [arg1 ... [arg9]]]

The name is the name of a file which will be read and
interpreted. If not given, this subinstance of the shell
will continue to read the standard input file.

In the file, character sequences of the form "$n", where n
is a digit 0, ..., 9, are replaced by the nth argument to
the invocation of the shell (arg). $0” is replaced by
name.

An end—of—file in the shell's input causes it to exit. A
side effect of this fact means that the way to log out from
UNIX is to type an end of file.

FILES /etc/glob

SEE ALSO [reference], which gives the theory of operation of the
shell.

DIAGNOSTICS “?", in case of any difficulty. The most common problem is
inability to find the given command. Others: input file
(“<“) cannot be found; no more processes can be created
(this will alleviate itself with the passage of time). Note
that no diagnostic is given for inability to create an
output (">") file; the standard output file has already
been closed when the condition is discovered and there is
no place to write the diagnostic.

If a "*" or “?“ is used, the "glob" routine is invoked; it
types "No command" if it cannot find the given command, and
“No match” if there were no files which matched an argument
with "?" or "*".

BUGS Better diagnostics should be provided. If a "*" or “?“ is
used, the command must be in /bin (Not, for example, in the
user’s directory.) This is actually a glob bug.

OWNER dmr, ken

11/3/71 STAT (I)

NAME stat -- get file status

SYNOPSIS stat name1

DESCRIPTION stat gives several kinds of information about one or more
files:

i—number
access mode
number of links
owner
size in bytes
date and time of last modification
name (useful when several files are named)

All information is self—explanatory except the mode. The
mode is a six—character string whose characters mean the
following:

1 s: file is small (smaller than 4096 bytes)
l: file is large

2 d: file is a directory
x: file is executable
u: set user ID on execution
—: none of the above

3 r: owner can read
—: owner cannot read

4 w: owner can write
—: owner cannot write

5 r: non—owner can read
—: non—owner cannot read

6 w: non—owner can write
—: non—owner cannot write

The owner is almost always given in symbolic form; however
if he cannot be found in "/etc/uids" a number is given.

If the number of arguments to stat is not exactly 1 a
header is generated identifying the fields of the status
information.

FILES /etc/uids

SEE ALSO ls with the —1 option gives the same information as stat.

DIAGNOSTICS "name?" for any error.

BUGS none

11/3/71 STRIP (I)

NAME strip -- remove symbols and relocation bits

SYNOPSIS strip name1

DESCRIPTION strip removes the symbol table and relocation bits
ordinarily attached to the output of the assembler and
loader. This is useful to save space after a program has
been debugged.

The effect of strip is the same as use of the —s
option of ld.

FILES /tmp/stma, stmb ... temporary file

SEE ALSO ld, as

DIAGNOSTICS Diagnostics are given for: non—existent argument; inability
to create temporary file; improper format (not an object
file); inability to re—read temporary file.

BUGS

OWNER dmr

11/3/71 SU (I)

NAME su -- become privileged user

SYNOPSIS su password

DESCRIPTION su allows one to become the super—user, who has all sorts
of marvelous powers. In order for su to do its magic, the
user must pass as an argument a password. If the password
is correct, su will execute the shell with the UID set to
that of the super—user. To restore normal UID privileges,
type an end—of—file to the super—user shell

FILES

SEE ALSO shell

DIAGNOSTICS "Sorry" if password is wrong

BUGS

OWNER dmr, ken

11/3/71 SUM (I)

NAME sum -- sum file

SYNOPSIS sum name

DESCRIPTION sum sums the contents of a file. In practice, it is most
often used to verify that all of a DECtape can be read
without error.

FILES none

SEE ALSO

DIAGNOSTICS "?" if the file cannot be read at all or if an error is
discovered during the read.

BUGS none
OWNER ken

11/3/71 TAP (I)

NAME tap -- manipulate DECtape

SYNOPSIS tap [key] [name ...]

DESCRIPTION tap saves and restores selected portions of the file system
hierarchy on DECtape. Its actions are controlled by the key
argument. The key is a string of characters containing at
most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or
directory names specifying which files are to be dumped,
restored, or tabled.

The function portion of the key is specified by one of the
following letters:

r The indicated files and directories, together with
all subdirectories, are dumped onto the tape. If
files with the same names already exists, they are
replaced (hence the r). "Same" is determined by
string comparison, so “./abc” can never be the same
as “/usr/dmr/abc even if “/usr/dmr” is the current
directory. If no file argument is given, "/" is the
default.

u updates the tape. u is the same as r, but a file is
replaced only if its modification date is later than
the date stored on the tape; that is to say, if it
has changed since it was dumped. u is the default
command if none is given.

d deletes the named files and directories
from the tape. At least one file argument must be
given.

x extracts the named files from the tape to the file
system. The owner, mode, and date—modified are
restored to what they were when the file was dumped.
If no file argument is given, the entire contents of
the tape are extracted.

t lists the names of all files stored on the tape
which are the same as or are hierarchically below
the file arguments. If no file argument is given,
the entire contents of the tape are tabled.

1 is the same as t except that an expanded listing is
produced giving all the available information about
the listed files.

The following characters may be used in addition to the
letter which selects the function desired.

11/3/71 TAP (I)

0, ..., 7 This modifier selects the drive on which the
tape is mounted. “0” is the default.

v Normally tap does its work silently. The v (verbose)
option causes it to type the name of each file it
treats preceded by a letter to indicate what is
happening.

r file is being replaced
a file is being added (not there before)
x file is being extracted
d file is being deleted

The v option can be used with r, u, d, and x only.

c means a fresh dump is being created; the
tape directory will be zeroed before beginning.
Usable only with r and u.

f causes new entries copied on tape to be ‘fake’ in
that only the entries, not the data associated with
the entries are updated. Such fake entries cannot be
extracted. Usable only with r’ and u.

w causes tap to pause before treating each
file, type the indicative letter and the
file name (as with v) await the user’s response.
Response "y" means "yes", so the file is treated.
Null response means "no" , and the file does not
take part in whatever is being done. Response "x"
means exit ; the tap command terminates immediately.
In the x function, files previously asked about have
been extracted already. With r, u and d no change
has been made to the tape.

m make (create) directories during an x if necessary.

i ignore tape errors. It is suggested that this option
be used with caution to read
damaged tapes.

FILES /dev/tap0 ... /dev/tap7

SEE ALSO rk

DIAGNOSTICS RK open error
RK read error
RK write error
Directory checksum
Directory overflow

11/3/71 TAP (I)

RK overflow

Phase error (a file has changed after it was selected for
dumping but before it was dumped)

BUGS All references to "RK" should read “tape.” The m option
does not work correctly in all cases. The i option is not
yet implemented.

OWNER ken

11/3/71 TM(I)

NAME tm -- provide time information

SYNOPSIS tm [command arg1]

DESCRIPTION tm is used to provide timing information. When used without
an argument, output like the following is given:

tim 77:43:20 29.2
ovh 13:59:42 1.2
dsk 12:06:30 4.1
idl 352:31:37 23.7
usr 3:32:15 0.1
der 5, 171 0, 0

The first column of numbers gives totals in the named
categories since the last time the system was cold—booted;
the second column gives the changes since the last time tm
was invoked. The tim row is total real time
(hours:minutes:seconds); unlike the other times, its origin
is the creation date of tm's temporary file. ovh is time
spent executing in the system; dsk is time spent waiting
for both kinds of disk I/O; idl is idle time; usr is user
execution time; der is RF disk error count (left number)
and RK disk error count (right number).

tm can be invoked with arguments which are assumed to
constitute a command to be timed. In this case the output
is as follows:

tim 2.2
ovh 0.3
dsk 1.8
idl 0.0
usr 0.0

The given times represent the number of seconds spent in
each category during execution of the command.

FILES /tmp/ttmp, /dev/rf0 (for absolute times) contains the
information used to calculate the differential times.

SEE ALSO format of file system (which tells where the times come
from)

'

DIAGNOSTICS "?" if the command cannot be executed; "can't creat temp
file” if trouble with /tmp; "cant read super—block" if
times cannot be read from system.

BUGS (1) when invoked with a command argument, everything going
on at the moment is counted, not just the command itself.
(2) Two users doing tm

11/3/71 TM (I)

simultaneously interfere with each other’s use of the
temporary file.

OWNER ken, dmr

11/3/71 TTY (I)

NAME tty -- get tty name

SYNOPSIS tty

DESCRIPTION tty gives the name of the user’s typewriter in the form
"ttyn” for n a_digit. The actual path name is then
"/dev/ttyn".

FILES

SEE ALSO

DIAGNOSTICS "not a tty" if the standard input file is not a typewriter.

BUGS

OWNER dmr, ken

11/3/71 TYPE (I)

NAME type -- type on 2741

SYNOPSIS type name1

DESCRIPTION type produces output on an IBM 2741 terminal with a
Correspondence type ball.

type uses typewriter tty5, which, because of the lack of
access ports, is also used as a standard communication
channel. Therefore, who should be used to verify the
absence of a user on tty5.

The method is as follows: type the type command. It will
wait until tty5 is dialled up. When the phone answers,
depress the interrupt button after paper has been loaded,
and the first file will be typed. spaces out to the end of
a sheet of paper and waits until the interrupt button is
depressed before beginning each new file.

FILES /dev/tty5

SEE ALSO who

DIAGNOSTICS

BUGS obviously some scheme is needed to prevent interference
between normal users and The best thing would be to support
2741’s as a standard terminal.

OWNER dmr

11/3/71 UMOUNT (I)

NAME umount -- dismount file system

SYNOPSIS umount special

DESCRIPTION announces to the system that the removable file system
previously mounted on special file special is to be
removed.

Only the super—user may issue this command.
FILES

SEE ALSO mount

DIAGNOSTICS

BUGS This command should be restricted to the super—
user.

OWNER ken, dmr

11/3/71 UN (I)

NAME un -- undefined symbols

SYNOPSIS un [name]

DESCRIPTION un prints a list of undefined symbols from an assembly or
loader run. If the file argument is not specified, a out is
the default. Names are listed alphabetically except that
non—global symbols come first. Undefined global symbols
(unresolved external references) have their first character
underlined.

FILES a.out

SEE ALSO as, ld

DIAGNOSTICS "?" if the file cannot be found.
BUGS
OWNER dmr, ken

11/3/71 WC (I)

NAME wc -- get (English) word count

SYNOPSIS wc name1 ...

DESCRIPTION wc provides a count of the words, text lines, and roff
control lines for each argument file.

A text line is a sequence of characters not beginning with
"." and ended by a new—line. A roff control line is a line
beginning with ".". A word is a sequence of characters
bounded by the beginning of a line, by the end of a line,
or by a blank or a tab.

FILES

SEE ALSO roff

DIAGNOSTICS none; arguments not found are ignored.

BUGS

OWNER jfo

11/3/71 WHO (I)

NAME who -- who is on the system

SYNOPSIS who

DESCRIPTION who lists the name, typewriter channel, and login time for
each current UNIX user.

FILES /tmp/utmp contains the necessary information; it is
maintained by init,

SEE ALSO /etc/init

DIAGNOSTICS

BUGS

OWNER dmr, ken

11/3/71 WRITE (I)

NAME write -- write to another user

SYNOPSIS write user

DESCRIPTION write copies lines from your typewriter to that of another
user. When first called, write sends the message

message from yourname...

The recipient of the message should write back at this
point. Communication continues until an end of file is read
from the typewriter or an interrupt is sent. At that point
write writes "EOT" on the other terminal.

Permission to write may be denied or granted by use of the
mesg command. At the outset writing is allowed. Certain
commands, in particular roff and pr, disallow messages in
order to prevent messy output.

If the character "!" is found at the beginning of a line,
write calls the mini—shell msh to execute the rest of the
line as a command.

The following protocol is suggested for using write: When
you first write to another user, wait for him to write back
before starting to send. Each party should end each message
with a distinctive signal (“(o)” for “over is
conventional)that the other may reply. "(oo)" (for over and
out”) is suggested when conversation is about to be
terminated.

FILES /tmp/utmp is used to discover the target user's typewriter
channel and the sending users s name. msh is used to
execute commands.

SEE ALSO mesg

DIAGNOSTICS "user not logged in"; "permission denied"

BUGS

OWNER dmr, ken

11/3/71 SYS BREAK (II)

NAME break -- set program break

SYNOPSIS sys break; addr / break = 17.

DESCRIPTION break sets the system’s idea of the highest location used
by the program to addr. Locations greater than addr and
below the stack pointer are not swapped and are thus
liable to unexpected modification.

If the argument is 0 or higher than the stack pointer the
entire 4K word user core area is swapped.

When a program begins execution via exec the break is set,
at the highest location defined by the program and data
storage areas. Ordinarily, therefore, only programs with
growing data areas need to use break.

FILES

SEE ALSO exec

DIAGNOSTICS none; strange addresses cause the break to be set to
include all of core.

BUGS

OWNER ken, dmr

11/3/71 SYS CEMT (II)

NAME cemt -- catch emt traps

SYNOPSIS sys cemt; arg / cemt = 29.; not in assembler

DESCRIPTION This call allows one to catch traps resulting from the emt
instruction. Arg is a location within the program; emt
traps are sent to that location. The normal effect of emt
traps may be restored by giving an arg equal to 0.

Prior to the use of this call, the result of an emt
instruction is a simulated rts instruction. The operand
field is interpreted as a register, and an rts instruction
is simulated for that register (after verifying that
various registers have appropriate values). This feature
is useful for debugging, since the most dangerous program
bugs usually involve an rts with bad data on the stack or
in a register.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 SYS CHDIR (II)

NAME chdir -- change working directory

SYNOPSIS sys chdir; dirname / chdir = 12.

DESCRIPTION dirname is address of the pathname of a directory,
terminated by a 0 byte. chdir causes this directory to
become the current working directory.

FILES

SEE ALSO

DIAGNOSTICS The error bit (c—bit) is set if the given name is not that
of a directory.

BUGS

OWNER ken, dmr

11/3/71 SYS CHMOD (II)

NAME chmod -- change mode of file

SYNOPSIS sys chmod; name; mode / chmod = 15.

DESCRIPTION The file whose name is given as the null—terminated string
pointed to by name has its mode changed to mode. Modes are
constructed by oring together some combination of the
following:

01 write, non—owner
02 read, non—owner
04 write, owner
10 read, owner
20 executable
40 set user ID on execution

Only the owner of a file (or the super—user) may change
the mode.

FILES

SEE ALSO

DIAGNOSTICS Error bit (c—bit) set if name cannot be found or if
current user is neither the owner of the file nor the
super—user.

BUGS
OWNER ken, dmr

11/3/71 SYS CHOWN (II)

NAME chown -- change owner of file

SYNOPSIS sys chown; name; owner / chown = 16.

DESCRIPTION The file whose name is given by the null—terminated string
pointed to by name has its owner changed to owner. Only
the present owner of a file (or the super—user) may donate
the file to another user. Also, one may not change the
owner of a file with the set—user—ID bit on, otherwise one
could create Trojan Horses able to misuse other’s files.

FILES

SEE ALSO /etc/uids has the mapping between user names and user
numbers.

DIAGNOSTICS The error bit (c—bit) is set on illegal owner changes.

BUGS

OWNER ken, dmr

11/3/71 SYS CLOSE (II)

NAME close -- close a file

SYNOPSIS (file descriptor in r0)
sys close / close = 6.

DESCRIPTION Given a file descriptor such as returned from an open or
creat call, close closes the associated file. A close of
all files is automatic on exit, but since processes are
limited to 10 simultaneously open files, close is
necessary to programs which deal with many files.

FILES

SEE ALSO creat, open

DIAGNOSTICS The error bit (c—bit) is set for an unknown file
descriptor.

BUGS

OWNER ken, dmr

11/3/71 SYS CREAT (II)

NAME creat -- create a new file

SYNOPSIS sys creat; name; mode / creat = 8.
(file descriptor in r0)

DESCRIPTION creat creates a new file or prepares to rewrite an
existing file called name; name is the address of a null—
terminated string. If the file did not exist, it is given
mode mode; if it did exist, its mode and owner remain
unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file
descriptor is returned in r0.

The mode given is arbitrary; it need not allow writing.
This feature is used by programs which deal with temporary
files of fixed names. The creation is done with a mode
that forbids writing. Then if a second instance of the
program attempts a creat, an error is returned and the
program knows that the name is unusable for the moment.
If the last link to an open file is removed, the file is
not destroyed until the file is closed.

FILES

SEE ALSO write, close

DIAGNOSTICS The error bit (c—bit) may be set if: a needed directory is
not readable; the file does not exist and the directory in
which it is to be created is not writable; the file does
exist and is unwritable; the file is a directory.

B UGS
OWNER ken, dmr

11/3/71 SYS EXEC (II)

NAME exec --execute a file

SYNOPSIS sys exec; name; args / exec = 11.

name: <...\0>
...

args: arg1; arg2; ...; 0
arg1: <...\0>
...

DESCRIPTION exec overlays the calling process with the named file,
then transfers to the beginning of the core image of the
file. The first argument to exec is a pointer to the name
of the file to be executed. The second is the address of a
list of pointers to arguments to be passed to the file.
Conventionally, the first argument is the name of the
file. Each pointer addresses a string terminated by a null
byte.

There can be no return from the file; the calling core
image is lost.

The program break is set from the executed file; see the
format of a.out.

Once the called file starts execution, the arguments are
passed as follows. The stack pointer points to the number
of arguments. Just above this number is a list of pointers
to the argument strings.

sp—> nargs

arg1
...
argn

arg1: <arg1\0>
 ...

argn: <argn\0>

The arguments are placed as high as possible incore: just
below 60000(8).

Files remain open across exec calls. However, the illegal
instruction, emt, quit, and interrupt trap specifications
are reset to the standard values. (See ilgins, cemt,
intr).

Each user has a real user ID and an effective (The real ID
identifies the person using the system; the effective ID
determines his access privileges.) exec changes the
effective user ID to the owner of the executed file if the
file has the “set—user—ID mode. The real user ID is not
affected.

11/3/71 SYS EXEC (II)

FILES

SEE ALSO fork

DIAGNOSTICS If the file cannot be read or if it is not executable, a
return from exec constitutes the diagnostic. The error bit
(c—bit) is set.

BUGS
OWNER ken, dmr

11/3/71 SYS EXIT (II)

NAME exit -- terminate process

SYNOPSIS sys exit / exit = I

DESCRIPTION exit is the normal means of terminating a process. All
files are closed and the parent process is notified if it
is executing a wait.

This call can never return.
FILES

SEE ALSO sys wait

DIAGNOSTICS —-

BUGS

OWNER ken, dmr

11/3/71 SYS FORK (II)

NAME fork -- spawn new process

SYNOPSIS sys fork / fork = 2.
(new process return)
(old process return)

DESCRIPTION fork is the only way new processes are created. The new
process’s core image is a copy of that of the caller of
fork the only distinction is the return location and the
fact that r0 in the old process contains the process ID of
the new process. This process ID is used by wait.

FILES

SEE ALSO sys wait, sys exec

DIAGNOSTICS The error bit (c—bit) is set in the old process if a new
process could not be created because of lack of swap
space.

BUGS See wait for a subtle bug in process destruction.

OWNER ken, dmr

11/3/71 SYS FSTAT (II)

NAME fstat -- get status of open file

SYNOPSIS (file descriptor in r0)
sys fstat; buf / fstat = 28.

DESCRIPTION This call is identical to stat, except that it operates on
open files instead of files given by name. It is most
often used to get the status of the standard input and
output files, whose names are unknown.

FILES

SEE ALSO sys stat

DIAGNOSTICS The error bit (c—bit) is set if the file descriptor is
unknown.

BUGS

OWNER ken, dmr

11/3/71 SYS GETUID (II)

NAME getuid -- get user identification

SYNOPSIS sys getuid / getuid = 24.
(user ID in r0)

DESCRIPTION getuid returns ‘the real user ID of the current process.
The real user ID identifies the person who is logged in,
in contradistinction to the effective user ID, which
determines his access permission at each moment. It is
thus useful to programs which operate using the "set user
ID" mode, to find out who invoked them.

FILES /etc/uids can be used to map the user ID number into a
name.

SEE ALSO setuid

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 SYS GTTY (II)

NAME gtty -- get typewriter status

SYNOPSIS (file descriptor in r0)
sys gtty; arg / gtty = 32.; not in assembler
...
arg: .=.+6

DESCRIPTION gtty stores in the three words addressed by arg the status
of the typewriter whose file descriptor is given in r0.
The format is the same as that passed by stty.

FILES

SEE ALSO stty

DIAGNOSTICS Error bit (c—bit) is set if the file descriptor does not
refer to a typewriter.

BUGS
OWNER ken, dmr

11/3/71 SYS ILGINS (II)

NAME ilgins -- catch illegal instruction trap

SYNOPSIS sys ilgins; arg / ilgins = 33.; not in assembler

DESCRIPTION ilgins allows a program to catch illegal instruction
traps. If arg is zero, the normal instruction trap
handling is done: the process is terminated and a core
image is produced. If arg is a location within the
program, control is passed to arg when the trap occurs.

This call is used to implement the floating point
simulator, which catches and interprets 11/45 floating
point instructions.

FILES

SEE ALSO fptrap, the floating point package

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 SYS INTR (II)

NAME intr -- set interrupt handling

SYNOPSIS sys intr; arg / intr = 27.

DESCRIPTION When arg is 0, interrupts (ASCII DELETE) are ignored. When
arg is 1, interrupts cause their normal result, that is,
force an exit. When arg is a location within the program,
control is transferred to that location when an interrupt
occurs.

After an interrupt is caught, it is possible to resume
execution by means of an rti instruction; however, great
care must be exercised, since all I/O is terminated
abruptly upon an interrupt. In particular, reads of the
typewriter tend to return with 0 characters read, thus
simulating an end of file.

FILES

SEE ALSO quit

DIAGNOSTICS

BUGS It should be easier to resume after an interrupt, but I
don’t know how to make it work.

OWNER ken, dmr

11/3/71 SYS LINK (II)

NAME link -- link to a file

SYNOPSIS sys link; name1 name2 / link = 9.

DESCRIPTION A link to name1 is created; the link has name name2. Either
name may be an arbitrary path name.

FILES

SEE ALSO unlink

DIAGNOSTICS The error bit (c—bit) is set when name cannot be found;
when name2 already exists; when the directory of name1
cannot be written; when an attempt is made to link to a
directory by a user other than the super—user.

BUGS
OWNER ken, dmr

11/3/71 SYS MKDIR (II)

NAME mkdir -- make a directory

SYNOPSIS sys mkdir; name; mode / mkdir = 14.

DESCRIPTION mkdir creates an empty directory whose name is the null—
terminated string pointed to by name. The mode of the di
rectory is mode. The special entries "." and ".." are not
present.

mkdir can only be invoked by the super—user.
FILES
SEE ALSO mkdir command

DIAGNOSTICS Error bit (c—bit) is set if the directory already exists
or if the user is not the super—user.

B UGS
OWNER ken, dmr

11/3/71 SYS MOUNT (II)

NAME mount -- mount file system

SYNOPSIS sys mount; special; name / mount = 21.; not in assembler

DESCRIPTION mount announces to the system that a removable file system has been
mounted on special file special; from now on, references to file name
will refer to the root file on the newly mounted file system. Special
and name are pointers to null—terminated strings containing the
appropriate path names.

Name must exist already. If it had useful contents, they are
inaccessible while the file system is mounted.

Almost always, name should be a directory so that an entire file
system, not just one file, may exist on the removable device.

FILES

SEE ALSO umount

DIAGNOSTICS Error bit (c—bit) set if special is inaccessible or dir does not
exist.

BUGS At most one removable device can be mounted at a time. The use of
this call should be restricted to the super—user.

OWNER ken, dmr

11/3/71 SYS OPEN (II)

NAME open -- open for reading or writing
SYNOPSIS sys open; name; mode / open = 5.

(descriptor in r0)

DESCRIPTION open opens the file name for reading (if mode is 0) or writing (if
mode is non—zero), name is the address of a string of ASCII
characters representing a path name, terminated by a null character.

The file descriptor should be saved for subsequent calls to read (or
write) and close.

In both the read and write case the file pointer is set to the
beginning of the file.

If the last link to an open file is removed, the file is not
destroyed until it is closed.

FILES

SEE ALSO creat, read, write, close

DIAGNOSTICS The error bit (c—bit) is set if the file does not exist, if one of
the necessary directories does not exist or is unreadable, or if the
file is not readable.

B UGS

OWNER ken, dmr

11/3/71 SYS QUIT (II)

NAME quit -- turn off quit signal

SYNOPSIS sys quit; flag / quit = 26.

DESCRIPTION When flag is 0, this call disables quit signals from the typewriter
(ASCII FS). When flag is 1, quits are re—enabled, and cause execution
to cease and a core image to be produced. When flag is an address in
the program, a quit causes control to be sent to that address.

Quits should be turned off only with due consideration.

FILES

SEE ALSO sys intr turns off interrupts

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 SYS READ (II)

NAME read -- read from file

SYNOPSIS (file descriptor in r0)
sys read; buffer; nchars / read = 3.
(nread in r0)

DESCRIPTION A file descriptor is a word returned from a successful open call.

Buffer is the location of nchars contiguous bytes into which the
input will be placed. It is not guaranteed that all nchars bytes
will be read, however; for example if the file refers to a
typewriter at most one line will be returned. In any event the
number of characters read is returned in r0.

If r0 returns with value 0, then end—of—file has been reached.

FILES

SEE ALSO open

DIAGNOSTICS As , r0 is 0 on return when the end of the file has been reached. If the
read was otherwise unsuccessful the error bit (c—bit) is set. Many
conditions, all rare, can generate an error: physical I/O errors, bad
buffer address, preposterous nchars, file descriptor not that of an
input file.

BUGS

OWNER ken, dmr

11/3/71 SYS RELE (II)

NAME rele -- release processor

SYNOPSIS sys rele / rele = 0; not in assembler

DESCRIPTION This call causes the process to be swapped out immediately if another
process wants to run. Its main reason for being is internal to the
system, namely to implement timer—runout swaps. However, it can be
used beneficially by programs which wish to loop for some reason
without consuming more processor time than necessary.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 SYS SEEK (II)

NAME seek -- move read/write pointer

SYNOPSIS (file descriptor in r0)
sys seek; offset; ptrname / seek = 19.

DESCRIPTION The file descriptor refers to a file open for reading or writing. The
read (or write) pointer for the file is set as follows:

if ptrname is 0, the pointer is set to offset.

if ptrname is 1, the pointer is set to its current location plus
offset.

if ptrname is 2, the pointer is set to the size of the file plus
offset.

FILES

SEE ALSO tell

DIAGNOSTICS The error bit (c—bit) is set for an undefined file descriptor.

BUGS A file can conceptually be as large as 2**20 bytes. Clearly only
2**16 bytes can be addressed by seek. The problem is most acute on
the tape files and RK and RF. Something is going to be done about
this.

OWNER ken, dmr

11/3/71 SYS SETUID (II)

NAME setuid -- set process ID

SYNOPSIS (process ID in r0)
sys setuid / setuid = 23.

DESCRIPTION The user ID of the current process is set to the argument in r0.
Both the effective and the real user ID are set. This call is only
permitted to the super—user.

FILES

SEE ALSO getuid

DIAGNOSTICS Error bit (c—bit) is set if the current user ID is not that of the
super—user.

BUGS

OWNER ken, dmr

11/3/71 SYS SMDATE (II)

NAME smdate -- set modified date on file

SYNOPSIS (time to AC—MQ)
sys smdate; file / smdate = 30.; not in assembler

DESCRIPTION File is the address of a null—terminated string giving the name of a
file. The modified time of the file is set to the time given in the
AC—MQ registers.

This call is allowed only to the super—user.

FILES

SEE ALSO

DIAGNOSTICS Error bit is set if the user is not the super— user or if the file
cannot be found.

BUGS

OWNER ken, dmr

11/3/71 SYS STAT (II)

NAME stat -- get file status

SYNOPSIS sys stat; name; buf / stat = 18.

DESCRIPTION name points to a null—terminated string naming a file; buf is the
address of a 34(10) byte buffer into which information is placed
concerning the file. It is unnecessary to have any permissions at all
with respect to the file, but all directories leading to the file
must be readable.

After stat, buf has the following format:

buf, +1 i—number
+2, +3 flags (see below)
+4 number of links
+5 user ID of owner size in bytes
+6,+7 size in bytes
+8,+9 first indirect block or contents block
...
+22,+23 eighth indirect block or contents block
+24,+25,+26,+27 creation time
+28,+29, +30,+31 modification time

+32,+33 unused

The flags are as follows:
100000 used (always on)
040000 directory
020000 file has been modified (always on)
010000 large file
000040 set user ID
000020 executable
000010 read, owner
000004 write, owner
000002 read, non—owner
000001 write, non—owner

FILES

SEE ALSO fstat

DIAGNOSTICS Error bit (c—bit) is set if the file cannot be found.

BUGS The format is going to change someday.

OWNER ken, dmr

11/3/71 SYS STIME (II)

N AME stime -- set time

SYNOPSIS (time in AC—MQ)
sys stime / stime = 25.; not in assembler

DESCRIPTION stime sets the system’s idea of the time and date. Only the super—
user may use this call.

FILES

SEE ALSO sys time

DIAGNOSTICS Error bit (c—bit) set if user is not the super— user.

BUGS

OWNER ken, dmr

11/3/71 SYS STTY (II)

NAME stty -- set mode of typewriter

SYNOPSIS (file descriptor in r0)
sys stty; arg / stty = 31.; not in assembler

arg: dcrsr; dcpsr; mode

DESCRIPTION stty sets mode bits for a typewriter whose file descriptor is passed
in r0. First, the system delays until the typewriter is quiescent.
Then, the argument dcrsr is placed into the typewriter’s reader
control and status register, and dcpsr is placed in the printer
control and status register. The DC—11 manual must be consulted for
the format of these words. For the purpose of this call, the most
important role of these arguments is to adjust to the speed of the
typewriter.

The mode arguments contains several bits which determine the system’s
treatment of the typewriter:

200 even (M37 tty) parity allowed
100 odd (non—M37 tty) allowed
040 raw mode: wake up on all characters
020 map CR into LF; echo LF or CR as CR—LF
010 don’t echo (half duplex)
004 map upper case to lower case on input (M33 TTY)

Characters with the wrong parity, as determined by bits 200 and 100,
are ignored.

In raw mode, every character is passed back immediately to the
program. No erase or kill processing is done; the end—of—file
character (EOT), the interrupt character (DELETE) and the quit
character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new—lines;
input of either CR or LF causes CR—LF both to be echoed (used for GE
TermiNet 300’s).

FILES

SEE ALSO gtty

DIAGNOSTICS The error bit (c—bit) is set if the file descriptor does not refer
to a typewriter.

BUGS This call should be used with care. It is all too easy to turn off
your typewriter.

OWNER ken, dmr

11/3/71 SYS TELL (II)

NAME tell -- get file pointer

SYNOPSIS (file descriptor in r0)
sys tell; offset; ptrname / tell = 20.
(value returned in r0)

DESCRIPTION The file descriptor refers to an open file. The value returned in r0
is one of:

if ptrname is 0, the value returned is offset;

if ptrname is 1, the value is the current
pointer plus offset

if ptrname is 2, the value returned is the
number of bytes in the file plus offset.

FILES

SEE ALSO seek

DIAGNOSTICS The error bit (c—bit) is set if the file descriptor is unknown.

BUGS Tell doesn’t work. Complain if you need it.

OWNER ken, dmr

11/3/71 SYS TIME (II)

NAME time -- get time of year
SYNOPSIS sys time / time = 13.

(time AC—MQ)

DESCRIPTION time returns the time since 00:00:00, Jan. 1, 1971, measured in
sixtieths of a second. The high order word is in the AC register and
the low order is in the MQ.

FILES

SEE ALSO

DIAGNOSTICS

BUGS The chronological—minded user will note that 2**32 sixtieths of a
second is only about 2.5 years.

OWNER ken, dmr

11/3/71 SYS UMOUNT (II)

NAME umount -- dismount file system

SYNOPSIS sys umount; special / umount = 22.; not in assembler

DESCRIPTION umount announces to the system that special file special is no longer
to contain a removable file system. The file associated with the
special file reverts to its ordinary interpretation (see mount).

The user must take care that all activity on the file system has
ceased.

FILES

SEE ALSO mount

DIAGNOSTICS Error bit (c—bit) set if no file system was mounted on the special
file.

BUGS Use of this call should be restricted to the super—user.

OWNER ken, dmr

11/3/71 SYS UNLINK (II)

NAME unlink -- remove directory entry

SYNOPSIS sys unlink; name / unlink = 10.

DESCRIPTION Name points to a null—terminated string. Unlink removes the entry for
the file pointed to by name from its directory. If this entry was the
last link to the file, the contents of the file are freed and the
file is destroyed. If, however, the file was open in any process, the
actual destruction is delayed until it is closed, even though the
directory entry has disappeared.

FILES
SEE ALSO link

DIAGNOSTICS The error bit (c—bit) is set to indicate that the file does not exist
or that its directory cannot be written. Write permission is not
required on the file itself. It is also illegal to unlink a directory
(except for the super—user).

BUGS Probably write permission should be required to remove the last link
to a file, but this gets in other problems (namely, one can donate an
undeletable file to someone else).

If the system crashes while a file is waiting to be deleted because
it is open, the space is lost.

OWNER ken, dmr

11/3/71 SYS WAIT (II)

NAME wait -- wait for process to die

SYNOPSIS sys wait / wait = 7.
(process ID in r0)

DESCRIPTION wait causes its caller to delay until one of its child processes
terminates. If any child has already died, return is immediate; if
there are no children, return is immediate with the error bit set. In
the case of several children several waits are needed to learn of all
the deaths.

FILES

SEE ALSO fork

DIAGNOSTICS error bit (c—bit) on if no children not previously waited for.

BUGS A child which dies but is never waited for is not really gone in that
it still consumes disk swap and system table space. This can make it
impossible to create new processes. The bug can be noticed when
several & separators are given to the shell not followed by an
command without an ampersand. Ordinarily things clean themselves up
when an ordinary command is typed, but it is possible to get into a
situation in which no commands are accepted, so no waits are done;
the system is then hung.

The fix, probably, is to have a new kind of fork which creates a
process for which no wait is necessary (or possible); also to limit
the number of active or inactive descendants allowed to a process.

OWNER ken, dmr

11/3/71 SYS WRITE (II)

NAME write —— write, on file

SYNOPSIS (file descriptor in r0)
sys write; buffer; nchars / write = 4.
(number written in r0)

DESCRIPTION A file descriptor is a word returned from a successful open or creat
call.

buffer is the address of nchars contiguous bytes which are written on
the output file. The number of characters actually written is
returned in r0. It should be regarded as an error if this is not the
same as requested.

For disk and tape files, writes which are multiples of 512 characters
long and begin on a 512—byte boundary are more efficient than any
others.

FILES

SEE ALSO sys creat, sys open

DIAGNOSTICS The error bit (c—bit) is set on an error: bad descriptor, buffer
address, or count. physical I/o errors;

BUGS

OWNER ken, dmr

11/3/71 ATOF (III)

NAME atof -- ascii to floating

SYNOPSIS jsr r5,atof; subr

DESCRIPTION atof will convert an ascii stream to a floating number returned
in fr0. The subroutine subr is called on r5 for each character
of the ascii stream. subr should return the character in r0.
The first character not used in the conversion is left in r0.
The floating point simulation should be active in either
floating or double mode, but in single precision integer mode.

FILES kept in /etc/liba.a

SEE ALSO fptrap

DIAGNOSTICS

BUGS The subroutine subr should not disturb any registers.

OWNER ken

11/3/71 ATOI (III)

NAME atoi -- ascii to integer

SYNOPSIS jsr r5,atoi; subr

DESCRIPTION •atoi will convert an ascii stream to a binary number returned
in mq. The subroutine subr is called on r5 for each character
of the ascii stream. subr should return the character in r0.
The first character not used in the conversion is left in r0.

FILES kept in /etc/liba.a

SEE ALSO

DIAGNOSTICS

BUGS The subroutine subr should not disturb any registers.

OWNER ken

11/3/71 CTIME (III)

NAME ctime -- convert date and time to ASCII

SYNOPSIS (move time to AC—MQ)
mov $buffer,r0
jsr pc,ctime

DESCRIPTION The buffer is 15 characters long. The time has the format

Oct 9 17:32:24

The input time is in the AC and MQ registers in the form
returned by sys time.

FILES kept in /etc/liba.a

SEE ALSO ptime, to print time; sys time

DIAGNOSTICS

BUGS The time is not taken modulo 1 year. (Jan 1 comes out Dec 32.)
Also, the clock period is only a couple of years.

OWNER dmr

11/3/71 EXP (III)

NAME exp -- exponential function
SYNOPSIS jsr r5,exp

DESCRIPTION The exponential of fr0 is returned in fr0. The floating point
simulation should be active in either floating or double mode,
but in single precision integer mode.

FILES kept in /etc/liba.a

SEE ALSO fptrap

DIAGNOSTICS

BUGS Large arguments will cause an overflow fault from the floating
point simulator.

OWNER ken

11/3/71 FPTRAP (III)

NAME fptrap -- floating point simulator

SYNOPSIS sys 33.; fptrap

DESCRIPTION fptrap is a program designed to pick up illegal instruction in
order to simulate a sub—set of the 11/45 floating point
hardware.

FILES kept in /etc/liba.a

SEE ALSO as, PDP—11/45 manual

DIAGNOSTICS none, hardware gives no diagnostics.

BUGS The simulation, if unsuccessful for any reason gives an lOT
fault from inside the simulator. This should be handeled
better.

OWNER ken, dmr

11/3/71 FTOA (III)

NAME ftoa -- floating to ascii conversion

SYNOPSIS jsr r5,ftoa; subr

DESCRIPTION ftoa will convert the floatin9 point number in fr0 into ascii
in the form [-]d.dddddddde[-]dd*. The floating point simulator
should be active in either floating or double mode, but in
single integer mode. For each character generated by ftoa, the
subroutine subr is called on register r5 with the character in
r0.

FILES kept in /etc/liba.a

SEE ALSO fptrap

DIAGNOSTICS

BUGS The subroutine subr should not disturb any registers.

OWNER ken

11/3/71 GETW, GETC, FOPEN (III)

NAME getw, getc, fopen -- buffered input

SYNOPSIS mov $filename , r0
jsr r5,fopen; iobuf

jsr r5,getc; iobuf
(character in r0)

jsr r5,getw; iobuf
(word in r0)

DESCRIPTION These routines are used to provide a buffered input facility.
iobuf is the address of a 134(10) byte buffer area whose
contents are maintamed by these routines. Its format is:

ioptr: . =. +2 / file descriptor
.=.+ 2 / characters left in buffer
.=.+ 2 / ptr to next character

. = .+28. / the buffer

fopen should be called initially to open the file. On return,
the error bit (c—bit) is set if the open failed. If fopen is
never called, get will read from the standard input file.

getc returns the .next byte from the file in r0. The error bit
is set on end of file or a read error.

getw returns the next word in r0. getc and getw may be used
alternately; there are no odd/even problems.

iobuf must be provided by the user; it must be on a word
boundary.

FILES kept in /etc/liba.a

SEE ALSO sys open, sys read; putc, putw, fcreat

DIAGNOSTICS c—bit set on EOF or error

BUGS for greater speed, the buffer should be 512 bytes long.
Unfortunately, this will cause several existing programs to
stop working.

OWNER dmr

11/3/71 ITOA (III)

NAME itoa -- integer to ascii conversion

SYNOPSIS jsr r5,itoa; subr

DESCRIPTION itoa will convert the number in r0 into ascii decimal possibly
preceded by a — sign. For each character generated by itoa, the
subroutine subr is called on register r5 with the character in
r0.

FILES kept in /etc/liba.a

SEE ALSO

DIAGNOSTICS

BUGS The subroutine subr should not disturb any registers.

OWNER ken

11/3/71 LOG (III)

NAME log -- logarithm base e

SYNOPSIS jsr r5,log

DESCRIPTION The logarithm base e of fr0 is returned in fr0. The floating
point simulation should be active in either floating or double
mode, but in single precision integer mode.

FILES kept in /etc/liba.a

SEE ALSO fptrap

DIAGNOSTICS The error bit (c—bit) is set if the input argument is less than
or equal to zero.

BUGS

OWNER ken

11/3/71 MESG (III)

NAME mesg -- write message on typewriter

SYNOPSIS jsr r5,mesg; <Now is the time\0>; .even

DESCRIPTION mesg writes the string immediately following its call onto the
standard output file. The string is terminated by a 0 byte.

FILES kept in /etc/liba.a, standard output file

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 PTIME (III)

NAME ptime -- print date and time

SYNOPSIS (move time to ac—mq)
mov file,r0
jsr pc,ptime

DESCRIPTION ptime prints the date and time in the form

Oct 9 17:20:33

on the file whose file descriptor is in r0. The string is 15
characters long. The time to be printed is placed in the AC
and MQ registers in the form returned by sys time.

FILES kept in /etc/liba.a

SEE ALSO sys time, ctime (used to do the conversion)

DIAGNOSTICS
BUGS see ctime

OWNER dmr, ken

11/3/71 PUTC, PUTW, FCREAT, FLUSH (III)

NAME putc, putw, fcreat, flush -- buffered output

SYNOPSIS may $filename , r0
jsr r5,fcreat; iobuf

(get byte in r0)
jsr r5,putc; iobuf

(get word in r0)
jsr r5,putw; iobuf

jsr r5,flush; iobuf

DESCRIPTION fcreat creates the given file (mode 17) and sets up the buffer
iohuf (size 134(10) bytes); putc and putw write a byte or word
respectively onto the file; flush forces the contents of the
buffer to be written, but does not close the file. The format
of the buffer is:

iobuf: .=.+2 / file descriptor
.=.+2 / characters unused in buffer
.=.+ 2 / ptr to next free character
.=.+128. / buffer

fcreat sets the error bit (c—bit) if the file creation failed;
none of the other routines return error information.

Before terminating, a program should call flush to force out
the last of the output.

The user must supply iohuf, which should begin on a word
boundary.

FILES kept in/etc/liba.a

SEE ALSO sys creat; sys write; getc, getw, fopen

DIAGNOSTICS error bit possible on fcreat call

BUGS buffers should be changed to 512 bytes.

OWNER dmr

11/3/71 SIN, COS (III)

NAME sin, cos -- sine cosine

SYNOPSIS jsr r5,sin (cos)

DESCRIPTION The sine (cosine) of fr0 (radians) is returned in fr0. The
floating point simulation should be active in either floating
or double mode, but in single precision integer mode. All
floating registers are used.

FILES kept in /etc/liba.a

SEE ALSO fptrap

DIAGNOSTICS

BUGS Size of the argument should be checked to make sure the result
is meaningful

OWNER ken, dmr

11/3/71 SWITCH (III)

NAME switch -- switch on value

SYNOPSIS (switch value in r0)
jsr r5,switch; swtab
(not—found return)

swtab: val1; lab1;

valn; labn
..; 0

DESCRIPTION switch compares the value of r0 against each of the vali; if a
match is found, control is transferred to the corresponding
lab. (after popping the stack once). If no match has been found
by the time a null labi occurs, switch returns.

FILES kept in /etc/liba.a

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 /DEV/MEM (IV)

NAME mem -- core memory

SYNOPSIS

DESCRIPTION mem maps the core memory of the computer into a file. It
may be used, for example, to examine, and even to patch
the system using the debugger.

Mem is a byte—oriented file; its bytes are numbered 0 to
65,535.

FILES

SEE ALSO

DIAGNOSTICS

BUGS If a location not corresponding to implemented memory is
read or written, the system will incur a bus—error trap
and, in panic, will reboot itself.

OWNER ken, dmr

11/3/71 /DEV/PPT (IV)

NAME ppt -- punched paper tape

SYNO?S IS

DESCRIPTION ppt refers to the paper tape reader or punch, depending on
whether it is read or written.

When is opened for writing, a 100—character leader is
punched. Thereafter each byte written is punched on the
tape. No editing of the characters is performed. When the
file is closed, a 100—character trailer is punched.

When ppt is opened for reading, the process waits until
tape is placed in the reader and the reader is on—line.
Then requests to read cause the characters read to be
passed back to the program, again without any editing.
This means that several null characters will usually
appear at the beginning of the file; they correspond to
the tape leader. Likewise several nulls are likely to
appear at the end. End—of—file is generated when the tape
runs out.

Seek calls for this file are meaningless and are
effectively ignored (however, the read/write pointers are
maintained and an arbitrary sequence of reads or writes
intermixed with seeks will give apparently correct results
when checked with tell).

FILES

SEE ALSO lbppt, dbppt, bppt format

DIAGNOSTICS

BUGS Previously, there were separate special files for ASCII
tape (which caused null characters to be suppressed) and
binary tape (which used a blocked format with checksums).
These notions were conceptually quite attractive, but they
were discarded to save space in the system.

OWNER ken, dmr

11/3/71 /DEV/RFO (IV)

NAME rf0 -- RF11—RS11 fixed—head disk file

SYNOPSIS

DESCRIPTION This file refers to the entire RF disk. It may be either
read or written, although writing is inherently very
dangerous, since a file system resides there.

The disk contains 1024 256—word blocks, numbered 0 to
1023. Like the other block—structured devices (tape, RK
disk) this file is addressed in blocks, not bytes. This
has two consequences: seek calls refer to block numbers,
not byte numbers; and sequential reading or writing always
advance the read or write pointer by at least one block.
Thus successive reads of 10 characters from this file
actually read the first 10 characters from successive
blocks.

FILES

SEE ALSO /dev/tap0, /dev/rk0

DIAGNOSTICS

BUGS The fact that this device is addressed in terms of blocks,
not bytes, is extremely unfortunate. It is due entirely to
the fact that read and write pointers (and consequently
the arguments to seek and tell) are single—precision
numbers. This really has to be changed but unfortunately
the repercussions are serious.

OWNER ken, dmr

11/3/71 /DEV/RK0 (IV)
NAME rk0 -- RK03 (or RK05) disk

SYNOPSIS

DESCRIPTION rk0 refers to the entire RK03 disk as a single
sequentially—addressed file. Its 256—word blocks are
numbered 0 to 4871. Like the RF disk and the tape files,
its addressing is block—oriented. Consult the /dev/rf0
section.

FILES

SEE ALSO /dev/rf0, /dev/tap0

DIAGNOSTICS

BUGS See /dev/rf0

OWNER ken, dmr

11/3/71 /DEV/TAP0 ... TAP7 (Iv)

NAME tap0 ... tap7

SYNOPSIS

DESCRIPTION These files refer to DECtape drives 0 to 7. Since the
logical drive number can be manually set, all eight files
exist even though at present there are only two physical
drives.

The 256—word blocks on a standard DECtape are numbered 0
to 577. However, the system makes no assumption about this
number; a block can be read or written if it exists on the
tape and not otherwise. An error is returned if a
transaction is attempted for a block which does not exist.

Like the RK and RF special files, addressing on the tape
files is block—oriented. See the RF0 section.

FILES

SEE ALSO /dev/rf0, /dev/rk0

DIAGNOSTICS

BUGS see /dev/rf0

OWNER ken, dmr

11/3/71 /DEV/TTY (IV)

NAME tty -- console typewriter

SYNOPSIS

DESCRIPTION tty (as distinct from tty0 ..., tty5) refers to the
console typewriter hard—wired to the PDP—11. Most of the
time it is turned off and so has little general use.

Generally, the disciplines involved in dealing with tty
are similar to those for tty0 ... and the appropriate
section should be consulted. The following differences are
salient:

The system calls stty and gtty do not apply to this
device. It cannot be placed in raw mode; on input, upper
case letters are always mapped into lower case letters; a
carriage return is echoed when a line—feed is typed.

The quit character is not FS (as with tty0...) but is
generated by the key labelled "alt mode".

By appropriate console switch settings, it is possible to
cause UNIX to come up as a single—user system with I/O on
this device.

FILES

SEE ALSO /dev/tty0, ...; init

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 /DEV/TTY0 ... TTY5 (Iv)

NAME tty0 ... tty5 -- communications interfaces

SYNOPSIS

DESCRIPTION These files refer to DC11 asynchronous communications
interfaces. At the moment there are six of them, but the
number is subject to change. Names for up to four others
will be constructed by an obvious algorithm.

When one of these files is opened, it causes the process
to wait until a connection is established. (In practice,
however, user’s programs seldom open these files; they are
opened by init and become a user’s standard input and
output file.) The very first typewriter file open in a
process becomes the control typewriter for that process.
The control typewriter plays a special role in the
handling quit or interrupt signals, as discussed below.
The control typewriter is inherited by a child process
during a fork.

A terminal associated with one of these files ordinarily
operates in full—duplex mode. Characters may be typed at
any time, even while output is occurring, and are only
lost when the system s character input buffers become
completely choked, which is very rare.

When first opened, the interface expects the terminal to
use 15 odd—parity, 10—bit ASCII characters per second and
to have the new—line function. Finally, the system
calculates delays after sending the code for certain
functions (e.g., new—line, tab) on the assumption that the
terminal is a Teletype model 37. All this is merely a long
way of saying that the system expects to be used by a TTY
37. However, most of these assumptions can be changed by a
special system call: in particular, the expected parity
can be changed; the speed, character size, and stop bits
can be changed (speeds available are 134.5, 150, 300, 1200
baud; see the DC11 manual); the new—line function can be
simulated by a combination of the carriage—return and
line—feed functions; carriage return can be translated
into new—line on input; upper case letters can be mapped
into lower case letters; echoing can be turned off so the
terminal operates in half duplex. See the system call
stty. (Also see init for the way 300—baud terminals are
detected.)

Normally, a typewriter operates in units of lines. This
means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how
many characters

11/3/71 /DEV/TTY0 ... TTY5 (IV)

are requested in the read call, at most one line will be
returned. It is not however necessary to read a whole line
at once; any number of characters may be requested in a
read, even one, without losing information.

The EOT character may be used to generate an end of file
from a typewriter. When an EOT is received, all the
characters waiting to be read are immediately passed to
the program, without waiting for a new—line. Thus if there
are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will
be passed back, and this is the standard end—of—file
signal.

When the carrier signal from the dataset drops (usually
because the user has hung up his terminal) any read
returns with an end—of—file indication. Thus programs
which read a typewriter and are sensitive to end—of—file
on their inputs (which all programs should be) will
terminate appropriately when hung up on.

Two characters have a special meaning when typed. The
ASCII DEL character (sometimes called rubout”) is the
interrupt signal. When this character is received from a
given typewriter, a search is made for all processes which
have this typewriter as their control typewriter, and
which have not informed the system that they wish to
ignore interrupts. If there is more than one such process,
one of these is selected, for practical purposes at
random. Then either the process is forced to exit or a
trap is simulated to an agreed—upon location in the
process. See intr for more information.

The ASCII character FS is the quit signal. Its treatment
is identical to the interrupt signal except that unless
the receiving process has made other arrangements it will
not only be terminated but a core image file will be
written. (See quit for more information.)

During input, erase and kill processing is normally done.
The character # erases the last character typed, except
that it will not erase beyond the beginning of a line or
an EOF. The character "@" kills the entire line up to the
point where it was typed, but not beyond an EOF. Both
these characters operate on a keystroke basis
independently of any backspacing or tabbing that may have
been done. Either "@“ or “#“ may be entered literally by
preceding it by "\"; the erase or kill character remains,
but the "\"

11/3/71 /DEV/TTY0 ... TTY5 (IV)

disappears.

It is also possible (again by sys stty) to put the
typewriter into raw mode. In this mode, the program
reading is wakened on each character, and when a program
reads, it waits only until at least one character has been
typed. In raw mode, no erase or kill processing is done;
and the EOT, quit and interrupt characters are not treated
specially.

Output is prosaic compared to input. It should be noted,
however, that when one or more characters are written,
they are actually transmitted to the terminal as soon as
previously—written characters have finished typing. When a
program produces characters too rapidly to be typed, as is
very common, it may be suspended for a time.

Odd parity is always generated on output, except that the
characters EOT and NAK have the wrong parity. Thus the 37
TTY will not hang up (EOT) or lock its keyboard (NAK) if a
program accidentally prints these characters.

FILES

SEE ALSO tty

DIAGNOSTICS

BUGS As has been suggested, UNIX has a heavy predisposition
towards 37 Teletype terminals. However, it is quite
possible to use 300—baud terminals such as the GE TermiNet
300. (See init for the procedure.) The main difficulty in
practice is 37—oriented delay calculations.

Terminals such as the IBM 2741 would theoretically be very
desirable but there are many difficulties related to its
inadequate and non—ASCII character sets (the 2741 has two,
count 'em) and the inherently half—duplex nature of the
terminal. It is possible to produce output on a 2741; cf
type.

OWNER ken, dmr

11/3/71 A.OUT (V)

NAME a.out -- assembler and link editor output

SYNOPSIS

DESCRIPTION a.out is the output file of the assembler as and the link
editor ld. In both cases, a.out is executable provided
there were no errors and no unresolved external references.

This file has four sections: a header, the program text, a
symbol table, and relocation bits. The last two may be
empty if the program was loaded with the —s option of ld or
if the symbols and relocation have been removed by strip.

The header always contains 6 words:

1 a “br .+14” instruction (205(8))
2 The size of the program text
3 The size of the symbol table
4 The size of the relocation bits area
5 The size of a data area
6 A zero word (unused at present)

The sizes of the program, symbol table, and relocation area
are in bytes but are always even. The branch instruction
serves both to identify the file and to jump to the text
entry point. The program text size includes the 6—word
header.

The data area is used when the file is executed; the exec
system call sets the program break to the sum of the text
size and this data size. The data area is generated by the
assembler when the location counter "." lies beyond the
last assembled data, for example when the program ends with
one or more constructions of the form .=.+n ; it is
preserved by the loader for the last program in a load.
(Routines other than the last have the appropriate number
of 0 words inserted, since there is no other provision for
zero—suppression in an a.out file.)

The symbol table consists of 6—word entries. The first four
contain the ASCII name of the symbol, null—padded. (In
fact, the assembler generates symbols of at most 7 bytes.)
The next word is a flag indicating the type of symbol. The
following values are possible:

00 undefined symbol
01 absolute symbol
02 register symbol
03 relocatable symbol
40 undefined global symbol
41 absolute global symbol

11/3/71 A.OUT (v)

43 relocatable global symbol

An undefined global corresponds to a GMAP “symref" and an
absolute or relocatable global to a "symdef" or absolute or
relocatable value respectively. Values other than those
given above may occur if the user has defined some of his
own instructions.

The last word of a symbol table entry contains the value of
the symbol. Its contents are not specified if the symbol is
undefined.

If a.out contains no unresolved global references, header
and text portions are exactly as they will appear in core
when the file is executed. If the value of a word in the
text portion involves a reference to an undefined global,
the word is replaced by the offset in the symbol table of
the appropriate symbol. (That is, possible offsets are 0,
12(10), 24(10),) Such a word will have appropriate
relocation bits.

The relocation bits portion uses a variable—length
encoding. There is a string of bits for each word in the
text portion. The scheme has at least two bits for. each
word, plus possibly two more to extend the codes available;
in either case the bits may be followed by a 16—bit string
to represent an offset to an external symbol. The bits are
packed together without regard to word boundaries. The last
word is filled out with 0’s on the right.

The possible relocation bit configurations are:

00
word is absolute

01
word is relocatable

10
word is a relative reference to an undefined global
symbol with no offset. Currently, the word contains the
offset in the symbol table of the symbol. When the
symbol becomes defined, say with x, this location will
contain x—.—2, where "." is the location of the word.

1100xxxxxxxxxxxxxxxx
word is a relative reference to an external symbol with
an offset. It is the same as the previous relocation
type, except that the 16—bit offset is added in when
the symbol

11/3/71 A.OUT (V)

becomes defined.

1101
word is a reference to an undefined external symbol
with no offset. At present the word contains the
symbol table offset of the symbol. When the symbol
becomes defined, the word will contain the value of
the symbol.

1110xxxxxxxxxxxxxxxx
word is a reference to an undefined external symbol
with an offset. At present, the word contains the
symbol table offset of the symbol. When the symbol
becomes defined, the word will contain the value of
the symbol plus the given 16—bit offset.

FILES

SEE ALSO as ld, strip, nm, un

DIAGNOSTICS

BUGS Soon, there will be a new type of symbol: the data area
symbol. In the text, it will appear as an ordinary external
reference. However, it need not be defined; this will be
done by the loader. Watch this space for more details.

OWNER dmr

11/3/71 ARCHIVE (V)

NAME archive (library) file format

SYNOPSIS

DESCRIPTION The archive command ar is used to combine several files
into one. Its use has three benefits: when files are
combined, the file space consumed by the breakage at the
end of each file (256 bytes on the average) is saved;
directories are smaller and less confusing; archive files
of object programs may be searched as libraries by the
loader ld.

A file produced by ar has a “magic number” at the start,
followed by the constituent files, each preceded by a file
header. The magic number is —147(10), or 177555(8) (it was
chosen to be unlikely to occur anywhere else). The header
of each file is 16 bytes long:

0—7
file name, null padded on the right

8—Il
Modification time of the file

12
User ID of file owner

13
file mode

14—15
file size

If the file is an odd number of bytes long, it is padded
with a null byte, but the size in the header is correct.

Notice there is no provision for empty areas in an archive
file.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 BPPT (V)

NAME binary punched paper tape format

SYNOPSIS

DESCRIPTION Binary paper tape. is used to pass and store arbitrary
information on paper tape. The format chosen has the
following features: a) no format of the data is assumed. b)
check summing c) zero suppress ion

The format is as follows:

Between records, NULL characters are ignored. The beginning
of the tape is considered between records, thus the leader
is ignored.

The first non—null character specifies the type and size of
the record. If the character is positive (1 to 177), the
record is a data record consisting of that many characters.
All but the last of these characters are data, the last
being a checksum. The checksum is calculated such that the
sum of the entire record is zero mod 256.

If the first character is negative (200—376) the record is
a zero suppression record. It is identical to minus that
number of zeros of data. One character of checksum follows
this negative character. It is the positive of the negative
character.

The special case of a record looking like a single zero
character suppressed (377;1) causes no data transfer, but
is an end—of—file indication.

FILES

SEE ALSO lbppt, dbppt

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 CORE (v)

NAME format of core image

SYNOPSIS

DESCRIPTION Three conditions cause UNIX to write out the core image of
an executing program: the program generates an unexpected
trap (by a bus error or illegal instruction); the user
sends a quit signal (which has not been turned off by the
program); a trap is simulated by the floating point
simulator. The core image is called "core" and is written
in the current working directory (provided it can be;
normal access controls apply). It is exactly 8192+64 bytes
long. The first 8192 represent the actual contents of
memory at the time of the fault; the last 64 are the
contents of the system’s per—user data area for this
process. Only the first word of this area will be
described.

When any trap which is not an I/O interrupt occurs, all the
useful registers are stored on the stack. After all the
registers have been stored, the contents of are placed in
the first cell of the user area; this cell is called u.sp.
Therefore, within the core image proper, there is an area
which contains the following registers in the following
order (increasing addresses):

(u.sp)—>sc
mq
ac
r5
r4
r3
r2
ri
r0
pc (at time of fault)
processor status (at time of fault)

The last two are stored by the hardware. It follows that
the contents of at the time of the fault were (u.sp) plus
22(10).

The t—bit (trap bit) in the stored status will be on when a
quit caused the generation of the core image, since this
bit is used in the implementation of quits.

FILES

SEE ALSO

DIAGNOSTICS

11/3/71 CORE (v)

BUGS

OWNER ken, dmr

11/3/71 DIRECTORY (V)

NAME format of directories

SYNOPSIS

DESCRIPTION A directory behaves exactly like an ordinary file, save
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word
of its i—node entry.

Directory entries are 10 bytes long. The first word is the
i—node of the file represented by the entry, if non—zero;
if zero, the entry is empty.

Bytes 2—9 represent the (8—character) file name, null
padded on the right. These bytes are not necessarily
cleared for empty slots.

By convention, the first two entries in each directory are
for "." and “..“. The first is an entry for the directory
itself. The second is for the parent directory. The meaning
of ".." is modified for the root directory of the master
file system and for the root directories of removable file
systems. In the first case, there is no parent, and in the
second, the system does not permit off—device references
without a mount system call. Therefore in both cases ".."
has the same meaning as ".".

FILES

SEE ALSO file system format

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 FILE SYSTEM (V)

NAME format of file system

SYNOPSIS

DESCRIPTION Every file system storage volume (e.g. RF disk, RK disk,
DECtape reel) has a common format for certain vital
information.

Every such volume is divided into a certain number of 256
word (512 byte) blocks. Blocks 0 and 1 are collectively
known as the super—block for the device; they define its
extent and contain an i—node map and a free—storage map.
The first word contains the number of bytes in the free—
storage map; it is always even. It is followed by the map.
There is one bit for each block on the device; the bit is 1
if the block is free. Thus if the number of free—map bytes
is n, the blocks on the device are numbered 0 through 8n—1.
The free—map count is followed by the free map itself. The
bit for block k of the device is in byte k/8 of the map; it
is offset k(mod 8) bits from the right. Notice that bits
exist for the superblock and the i—list, even though they
are never allocated or freed.

After the free map is a word containing the byte count for
the i—node map. It too is always even. I—numbers below
41(10) are reserved for special files , and are never
allocated; the first bit in the i—node free map refers to
i—number 41. Therefore the byte number in the i—node map
for i—node i is (i—41)/8. It is offset (i—41) (mod 8) bits
from the right; unlike the free map, a "0" bit indicates an
available i—node.

I—numbers begin at 1, and the storage for i—nodes begins at
block 2. Also, i—nodes are 32 bytes long, so 16 of them fit
into a block. Therefore, i—node i is located in block
(i+31)/16 of the file system, and begins 32*(i+31)(mod 16))
bytes from its start.

There is always one file system which is always mounted; in
standard UNIX it resides on the RF disk. This device is
also used for swapping. The swap areas are at the high
addresses on the device. It would be convenient if these
addresses did not appear in the free list, but in fact this
is not so. Therefore a certain number of blocks at the top
of the device appear in the free map, are not marked free,
yet do not appear within any file. These are the blocks
that show up missing in a check of the RE’ disk.

Again on the primary file system device, there

11/3/71 FILE SYSTEM (V)

are several pieces of information following that previously
discussed. They contain basically the information typed by
the tm command; namely, the times spent since a cold boot
in various categories, and a count of I/O errors. In
particular, there are two words with the calendar time
(measured since 00:00 Jan 1, 1971); two words with the time
spent executing in the system; two words with the time
spent waiting for I/O on the RF and RK disks; two words
with the time spent executing in a user's core; one byte
with the count of errors on the RF disk; and one byte with
the count of errors on the RK disk. All the times are
measured in sixtieths of a second.

I—node 41(10) is reserved for the root directory of the
file system. No i—numbers other than this one and those
from I to 40 (which represent special files) have a built—
in meaning. Each i—node represents one file. The format of
an i—node is as follows, where the left column represents
the offset from the beginning of the i—node:

0—1 flags (see below)
2 number of links
3 user ID of owner
4—5 size in bytes
6—7 first indirect block or contents block
...
20—21 eighth indirect block or contents block
22—25 creation time
26—29 modification time

30—31 unused

The flags are as follows:

100000 i—node is allocated
040000 directory
020000 file has been modified (always on)
010000 large file
000040 set user ID on execution
000020 executable
000010 read, owner
000004 write, owner
000002 read, non—owner
000001 write, non—owner

The allocated bit (flag 100000) is believed even if the i-
node map says the i—node is free; thus corruption of the
map may cause i—nodes to become unallocatable, but will not
cause active nodes to be reused.

Byte number n of a file is accessed as follows: n is
divided by 512 to find its logical block number (say b) in
the file. If the file is small

11/3/71 FILE SYSTEM (V)

(flag 010000 is 0), then b must be less than 8, and the
physical block number corresponding to b is the bth entry
in the address portion of the i—node.

If the file is large, b is divided by 256 to yield a number
which must be less than 8 (or the file is too large for
UNIX to handle). The corresponding slot in the i—node
address portion gives the physical block number of an
indirect block. The residue mod 256 of b is multiplied by
two (to give a byte offset in the indirect block) and the
word found there is the physical address of the block
corresponding to b.

If block b in a file exists, it is not necessary that all
blocks less than b exist. A zero block number either in the
address words of the i—node or in an indirect block
indicates that the corresponding block has never been
allocated. Such a missing block reads as if it contained
all zero words.

FILES

SEE ALSO format of directories

DIAGNOSTICS

BUGS Two blocks are not enough to handle the i— and free—storage
maps for an RP02 disk pack, which contains around 10
million words.

OWNER

11/3/71 PASSWD (V)

NAME passwd -- password file

SYNOPSIS

DESCRIPTION passwd contains for each user the following information:

name (login name)
password
numerical user ID
default working directory
program to use as Shell

This is an ASCII file. Each field within each a user's
entry is separated from the next by a colon. Each user is
separated from the next by a new—line. If the password
field is null, no password is demanded; if the Shell field
is null, the Shell itself is used.

This file, naturally, is inaccessible to anyone but the
super—user.

This file resides in directory /etc.

FILES

SEE ALSO /etc/init

DIAGNOSTICS

BUGS

OWNER super—user

11/3/71 UIDS (V)

NAME /etc/uids -- map user names to user IDs SYNOPSIS

DESCRIPTION This file allows programs to map user names into user
numbers and vice versa. Anyone can read it. It resides in
directory /etc, and should be updated along with the
password file when a user is added or deleted.

The format is an ASCII name, followed by a colon, followed
by a decimal ASCII user ID number.

FILES

SEE ALSO

DIAGNOST ICS

BUGS

OWNER dmr, ken

11/3/71 UTMP (V)

NAME /tmp/utmp -- user information

SYNOPSIS

DESCRIPTION This file allows one to discover information about who is
currently using UNIX. The file, is binary; each entry is
16(10) bytes long. The first eight bytes contain a user's
login name or are null if the table slot is unused. The low
order byte of the next word contains the last character of
a typewriter name (currently. '0' to '5' for /dev/tty0 to
/dev/tty5). The next two words contain the user’s login
time. The last word is unused.

This file resides in directory /tmp.

FILES

SEE ALSO /etc/init, which maintains the file.

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 BASIC (VI)

NAME basic -- DEC supplied BASIC

SYNOPSIS basic [file]

DESCRIPTION Basic is the standard BASIC V000 distributed as a stand
alone program. The optional file argument is read before
the console. See DEC—11—AJPB—D manual.

Since bas is smaller and faster, basic is not maintained
on line.

FILES

SEE ALSO bas

DIAGNOSTICS See manual

BUGS GOK

OWNER dmr

11/3/71 BJ (VI)

NAME bj -- the game of black jack

SYNOPSIS /usr/games/bj

DESCRIPTION Black jack is a serious attempt at simulating the dealer in
the game of black jack (or twenty—one) as might be found
in Reno.

The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer
natural loses $2. Both dealer and player naturals is a
‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to
make an ‘insurance’ bet against the chance of a dealer
natural. If this bet is not taken, play resumes as
normal. If the bet is taken, it is a side bet where the
player wins $2 if the dealer has a natural and loses $1
if the dealer does not.

If the player is dealt two cards of the same value, he
is allowed to ‘double’. He is allowed to play two
hands, each with one of these cards. (The bet is
doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the
player may ‘double down’. He may double the bet ($2 to
$4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card)
as long as his total is not over twenty—one. If the
player ‘busts’ (goes over twenty—one), the dealer wins
the bet.

When the player ‘stands’ (decides not to hit), the
dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the
largest total wins. A tie is a push.

The machine deals and keeps score. The following questions
will be asked at appropriate times. Each question is
answered by x followed by a new line for ‘yes’, or just
new line for ‘no’.

means ‘do you want a hit?’
Insureance?

11/3/71 BJ (VI)

double down?

Every time the deck is shuffled, the dealer so states and
the ‘action’ (total bet) and ‘standing’ (total won or
loss) is printed. To exit, hit the interrupt key (DEL) and
the action and standing will be printed.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken

11/3/71 CAL (VI)

NAME cal -- print calendar

SYNOPSIS /usr/ken/cal year

DESCRIPTION Cal will print a calendar for the given year. The year can
be between 0 (really 1 BC) and 9999. For years when
several calendars were in vogue in different countries,
the calendar of England (and therefore her colonies) is
printed.

P.S. try cal of 1752.
FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken

11/3/71 CHESS (VI)

NAME chess -- the game of chess

SYNOPSIS /usr/games/chess

DESCRIPTION Chess is an attempt at computer chess. The program ‘speaks’
in algebraic chess notation. The initial board
configuration in this notation is as follows:

8 R N B Q K B N R
7 P P P P P P P P
6 - * - * - * - *
5 * - * - * - * -
4 - * - * - * - *
3 * - * - * - * -
2 p p p p p p p p
1 r n b q k b n r
 a b c d e f g h

A move is specified by the ‘from’ co—ordinate followed by
the ‘to’ co—ordinate. Thus the white P—K4 move would be
‘e2e4’. The black P—K4 would be ‘e7e5’.

The following commands are recognized by the chess
program:

move
Make the move if legal. The program does not keep track
of who is to play. The move is made for what ever side
is specified.

move x
Make the move regardless of legality. This is a good
way to either set up a desired situation or to cheat.
The initial move ‘e2e8x’ is a winner.

mw
The program will compute and make a move for the white
pieces.

m
The program will compute and make a move for the black
pieces.

lab
Set the level parameters to a and b, where a and b are
numbers between 0 and 9. The initial settings are 2 and
8. The first parameter increases computation time
rapidly while the second parameter only increases
computation exponentially. Currently move times run
from 20 seconds to 10 minutes. It was hoped that these
numbers would be usefully related to the program’s
competence.

11/3/71 CHESS (VI)

p
The board is printed.

u
The last move is un—made. This is another
good way to cheat.

t
All the moves to date are printed.

s

The current game situation is saved on the
file c.tmp.

r
The game situation on the file c.tmp is restored.

! command
The unix command is executed by the mini— shell.

An interrupt (DEL) will pull the program out of its
computation. If it is trying to make a move, the best move
to date is made.

FILES c.tmp

SEE ALSO msh

DIAGNOSTICS ? if an illegal move is attempted, or if an unknown command
is typed.

BUGS The current version does not recognize castling, promotion
and en passant. A new version is in the mill.

OWNER ken

11/3/71 DAS (VI)

NAME das —— disassembler

SYNOPSIS

DESCRIPTION A PDP-11 disassembler exists. Contact the author for more
information.

FILES

SEE ALSO

DIAGNOST ICS

BUGS

OWNER ken

DLI (VI)
11/3/71

NAME dli -- load DEC binary paper tapes

SYNOPSIS dli output [input]

DESCRIPTION dli will load a DEC binary paper tape into the output
file. The binary format paper tape is read from the input
file (/dev/ppt is default.)

FILES /dev/ppt

SEE ALSO
DIAGNOSTICS "checksum"

BUGS —-

OWNER dmr

11/3/71 DPT (VI)

NAME dpt -- read DEC ASCII paper tape

SYNOPSIS dpt output [input]

DESCRIPTION dpt reads the input file (/dev/ppt default) assuming the
format is a DEC generated ASCII paper tape of an assembly
language program. The output is a UNIX ASCII assembly
program.

FILES /dev/ppt

SEE ALSO

DIAGNOSTICS

BUGS Almost always a hand pass is required to get a correct
output.

OWNER ken, dmr

11/3/71 MOO (VI)

NAME moo -- a game

SYNOPSIS /usr/games/moo

DESCRIPTION moo is a guessing game imported from England.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken

SORT (VI)
11/3/71

NAME sort -- sort a file

SYNOPSIS sort input output

DESCRIPTION sort will sort the input file and write the sorted file on
the output file. Wide options are available on collating
sequence and ignored characters.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER dmr, ken

11/3/71 TTT (VI)

NAME ttt -- tic—tac—toe

SYNOPSIS /usr/games/ttt

DESCRIPTION ttt is the X’s and O’s game popular in 1st grade. This is
a learning program that never makes the same mistake
twice.

FILES ttt.k -- old mistakes

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken

11/3/71 /ETC/AS2 (VII)

NAME as2 -- assembler pass 2

SYNOPSIS

DESCRIPTION as2 is invoked by the assembler as to perform its second
pass.

FILES see as

SEE ALSO as

DIAGNOSTICS see as

BUGS

OWNER dmr

11/3/71 /ETC/BA (VII)

NAME ba -- B assembler

SYNOPSIS /etc/ba name

DESCRIPTION ba is invoked by the B command in order to turn
the B intermediate code into assembly language.

FILES name.i (input), name.s (output)

SEE ALSO b command, /etc/bc

DIAGNOSTICS

BUGS At the moment, the b command is defunct, and ba is invoked
via a command file.

OWNER ken

11/3/71 /ETC/BC (VII)

NAME bc -- B compiler

SYNOPSIS /etc/bc name.b name.i

DESCRIPTION bc is the B compiler proper; it turns B source into
intermediate code. It is invoked from the b command.

FILES name.b (input), name.i (intermediate output)

SEE ALSO b (command), /etc/ba

DIAGNOSTICS

BUGS The b command is defunct at the moment; bc is called from a
command file.

OWNER ken

11/3/71 /ETC/BILIB (VII)

NAME bilib -- B interpreter library

SYNOPSIS

DESCRIPTION bilib is the library of B runtime operators. It is searched
during the loading of a B—compiled program.

Standard B subroutines are contained in /etc/libb.a.

FILES

SEE ALSO b (command); ar, ld

DIAGNOSTICS

BUGS The following assignment binary operators are missing: b102
(=|) b103 (=&), b104 (===), b105 (=!=), b106 (=<=), b107
(=<), b110 (=>=), b111 (=>=), b112 (=>>), b113 (=<<), b120
(=/).

OWNER ken, dmr

11/3/71 BOOT PROCEDURES (VII)

NAME bos, maki, rom, vcboot, msys, et al

SYNOPSIS

DESCRIPTION On the RF disk, the highest 16K words are reserved for
stand—alone programs. These 16K words are allocated as
follows:

bos (1K)
Warm UNIX (6K)
Cold UNIX (6K)
unassigned (3K)

The UNIX read only memory (ROM) is home cut with 2 programs
of 16 words each. The first (address 173700) reads bos from
the RF disk into core location 54000 and transfers to 54000.
The other ROM program (address 173740) reads a DECtape
sitting in the end—zone on drive 0 into core location 0 and
transfers to 0. This latter operation is compatible with
part of DEC's standard ROM. The disassembled code for the
UNIX ROM follows:

173700: mov $177472,r0 12700;177472
mov $3,—(r0) 12740;3
mov $140000,—(r0) 12740;140000
mov $54000,—(r0) 12740;54000
mov $—2000,—(r0) 12740;176000
mov $5,—(r0) 12740;5
tstb (r0) 105710
bge .—2 2376
jmp *$5400Q 137;54000

173740: mov $177350,r0 12700;177350
clr —(r0) 5040
mov r0,—(r0) 10040
mov $3,—(r0) 12740;3
tstb (r0) 105710
bge .—2 2376
tst *$177350 5737;177350
bne . 1377
movb $5,(r0) 112710;5
tstb (r0) 105710
bge .—2 2376
clr pc 5007

The program bos (Bootstrap Operating System) examines the
console switchs and executes one of several internal
programs depending on the setting. If no setting is
recognizable, bos loops waiting for a recognizable setting.
The following settings are currently recognized:

173700
73700 Will read Warm UNIX from the RF into core location

0 and transfer to 400.

11/3/71 BOOT PROCEDURES (VII)

1 Will read Cold UNIX from the RF into core location
0 and transfer to 400.

2 Will read the unassigned 3K program into core
location 0 and transfer to 400.

10 Will dump 12K words of memory from core location 0
onto DECtape drive 7.

0 Will load a standard UNIX binary paper tape into
core location 0 and transfer to 0.

57500 Will load the standard DEC absolute and binary
loaders and transfer to 57500.

Thus we come to the UNIX warm boot procedure: put 173700
into the switches, push load address and then push start.
The alternate switch setting of 73700 that will load warm
UNIX is used as a signal to bring up a single user system
for special purposes. See /etc/init.

Cold boots can be accomplished with the Cold UNIX program,
but they’re not. Thus the Cold UNIX slot on the RF may have
any program desired. This slot is, however, used during a
cold boot. Mount the UNIX INIT DECtape on drive 0 positioned
in the end—zone. Put 173740 into the switches. Push load
address. Put 1 into the switches. Push start. This reads a
program called vcboot from the tape into core location 0 and
transfers to it. vcboot then reads 16K words from the
DECtape (blocks 1—32) and copies the data to the highest 16K
words of the RF. Thus this initializes the read—only part of
the RF. vcboot then reads in bos and executes it. bos then
reads in Cold UNIX and executes that. Cold UNIX halts for a
last chance before it completely initializes the RF file
system. Push continue, and Cold UNIX will initialize the RF.
It then sets into execution a user program that reads the
DECtape for initialization files starting from block 33.
When this is done, the program executes /etc/init which
should have been on the tape.

The INIT tape is made by the program maki running under
UNIX. maki writes vcboot on block 0 of /dev/tap7 It then
copies the RF 16K words (using /dev/rf0) onto blocks 1 thru
32. It has internally a list of files to be copied from
block 33 on. This list follows:

/etc/init
/bin/chmod

11/3/71 BOOT PROCEDURES (VII)

/bin/chown
/bin/cp
/bin/1n
/bin/ls
/bin/mkdir
/bin/mv
/bin/rm
/bin/rmdir
/bin/sh
/bin/stat
/bin/tap

Thus this is the set of programs available after a cold
boot. /etc/init and /bin/sh are mandatory. /bin/tap and
/bin/mkdir are used to load up the file system. The rest of
the programs are frosting. As soon as possible, an sdate
should be done.

The last link in this incestuous daisy chain is the program
msys

msys char file

will copy the file file onto the RF read only slot specified
by the characacter char. Char is taken from the following
set:

b bos
u Warm UNIX
1 Cold UNIX
2 unassigned

Due to their rarity of use, and msys are maintained offline
and must be reassembled before used.

FILES /dev/rf0, /dev/tapn

SEE ALSO /etc/init, /bin/tap, /bin/sh, /bin/mkdir, bppt format

DIAGNOSTICS

BUGS The files /bin/mount, /bin/sdate, and /bin/date should be
included in the initialization list of maki.

OWNER ken

11/3/71 /ETC/BRT1, BRT2 (VII)

NAME brtl, brt2 -- B runtime routines

SYNOPSIS

DESCRIPTION The first of these routines must be loaded first in an
executable B program; the second must be loaded last, after
all other routines. They are not in /etc/bilib only because
having them separate is the easiest way to assure the order
of loading.

FILES

SEE ALSO b command, bilib

DIAGNOSTICS

BUGS

OWNER ken

11/3/71 /ETC/F1, F2, F3, F4 (VII)

NAME f1, f2; f3, f4 -- Fortran compiler

SYNOPSIS

DESCRIPTION These programs represent the four phases of a Fortran
compilation:

f1: specification statements
f2: common and equivalence allocation
f3: executable statements
f4: cleanup

Each exec’s the next; the first is called by the for
command.

FILES f.tmpl, f.tmp2, f.tmp3

SEE ALSO for

DIAGNOSTICS

BUGS Besides the fact that there is a good deal of the Fortran
language missing, there is no for command; Fortran is
invoked via a command file.

OWNER ken, dmr

11/3/71 /ETC/GLOB (VII)

NAME glob -- global

SYNOPSIS

DESCRIPTION glob is used to expand arguments to the shell containing "*"
or "?". It is passed the argument list containing the
metacharacters; glob expands the list and calls the command
itself.

FILES

SEE ALSO sh

DIAGNOSTICS "No match", "no command"

BUGS glob will only load a command from /bin. Also if any "*" or
"?" argument fails to generate matches, “No match is typed
and the command is not executed.

OWNER dmr

11/3/71 /ETC/INIT (VII)

NAME init -- process initialization

SYNOPSIS

DESCRIPTION init is invoked inside UNIX as the last step in the boot
procedure. It first carries out several housekeeping duties:
it must change the modes of the tape files and the RK disk
file to 17, because if the system crashed while a tap or rk
command was in progress, these files would be inaccessible;
it also truncates the file /tmp/utmp, which contains a list
of UNIX users, again as a recovery measure in case of a
crash. Directory usr is assigned via sys mount as resident
on the RK disk.

init then forks several times so as to create one process
for each typewriter channel on which a user may log in. Each
process changes the mode of its typewriter to 15 (read/write
owner, write—only non—owner; this guards against random
users stealing input) and the owner to the super—user. Then
the typewriter is opened for reading and writing. Since
these opens are for the first files open in the process,
they receive the file descriptors 0 and 1, the standard
input and output file descriptors. It is likely that no one
is dialled in when the read open takes place; therefore the
process waits until someone calls. At this point, init types
its “login: message and reads the response, which is looked
up in the password file. The password file contains each
user’s name, password, numerical user ID, default working
directory, and default shell. If the lookup is successful
and the user can supply his password, the owner of the
typewriter is changed to the appropriate user ID. An entry
is made in /tmp/utmp for this user to maintain an up—to—date
list of users. Then the user ID of the process is changed
appropriately, the current directory is set, and the
appropriate program to be used as the Shell is executed.

At some point the process will terminate, either because the
login was successful but the user has now logged out, or
because the login was unsuccessful. The parent routine of
all the children of init has meanwhile been waiting for such
an event. When return takes place from the sys init simply
forks again, and the child process again awaits a user.

There is a fine point involved in reading the login message.
UNIX is presently set up to handle automatically two types
of terminals: 150 baud, full duplex terminals with the line—
feed

11/3/71 /ETC/INIT (VII)

function (typically, the Model 37 Teletype terminal), and
300 baud, full duplex terminals with only the line—space
function (typically the GE TermiNet terminal). The latter
type identifies itself by sending a line—break (long space)
signal at login time. Therefore, if a null character is
received during reading of the login line, the typewriter
mode is set to accommodate this terminal and the "login:"
message is typed again (because it was garbled the first
time).

Init, upon first entry, checks the switches for 73700. If
this combination is set, will open /dev/tty as standard
input and output and directly execute /bin/sh. In this
manner, UNIX can be brought up with a minimum of hardware
and software.

FILES /tmp/utmp, /dev/ttyO ... /dev/ttyn

SEE ALSO sh

DIAGNOSTICS "No directory", "No shell". There are also some halts if
basic I/O files cannot be found in /dev.

BUGS

OWNER ken, dmr

11/3/71 /ETC/KBD (VII)

NAME kbd -- keyboard map

SYNOPSIS cat /etc/kbd

DESCRIPTION kbd contains a map to the keyboard for model 37 Teletype
terminals with the extended character set feature. If kbd is
printed on such a terminal, the following will appear:

<[1234567890—_]^\ >qwertyuiop@ asdfghjkl;: zxcvbnm,./

... [rest deleted --DMR 1998]

FILES

SEE ALSO

DIAGNOSTICS

BUGS
OWNER jfo

11/3/71 /ETC/LIBA.A (VII)

NAME liba.a -- assembly language library
SYNOPSIS

DESCRIPTION This library is the standard location for assembly—language
subroutines of general use. A section of this manual is
devoted to its contents.

This library is searched when the link editor ld encounters
the "—l" argument.

FILES

SEE ALSO ld; library manual
DIAGNOSTICS

BUGS

OWNER dmr, ken

11/3/71 /ETC/LIBB.A (VII)

NAME libb.a. -- B library

SYNOPSIS

DESCRIPTION This library contains all B—callable subroutines of general
utility. Its contents are detailed in the library sectionof
the B manual. At present its contents are:

char
getchr
putchr
exit
printf
seek
setuid
stat
time
unlink
wait
lchar
chdir
chmod
chown
close
creat
execl
execv
fork.
fstat
getuid
intr
1ink
makdir
open
read
write
ctime

FILES

SEE ALSO b

DIAGNOSTICS

BUGS
OWNER ken, dmr

11/3/71 LIBF.A (VII)
NAME /etc/libf.a —— Fortran library

SYNOPSIS

DESCRIPTION This library contains all the Frotran runtime routines. Many
are. missing.

FILES
SEE ALSO f1, f2, f3, f4

DIAGNOSTI CS

BUGS Will be renamed, and libf.a reserved for subroutines and
functions.

OWNER ken, dmr

11/3/71 LOGIN, LOGOUT (VII)

NAME logging in and logging out

SYNOPSIS

DESCRIPTION UNIX must be called from an appropriate terminal. The two
general classes of terminals which UNIX supports are
typified by the 37 Teletype on the one hand and the GE
TermiNet 300 and Memorex 1240 on the other. The principal
difference is the baud rate (150 vs. 300) and the treatment
of the carriage return character. Most terminals operating
at 150, 300, or 1200 baud using the ASCII character set
either work (more or less) at the moment or can be used by
special arrangement. In particular, special arrangement is
necessary for terminals which do not generate lower—case
ASCII characters.

It is also necessary to have a valid UNIX user ID and (if
desired) password. These may be obtained, together with the
telephone number, from the system administrators.

The same telephone number serves terminals operating at both
the standard speeds. When a connection is established via a
150—baud terminal (e.g. TTY 37) UNIX types out "login:" ;
you respond with your user name, and, if a mask is typed,
with a password. If the login was successful, the @
character is typed by the Shell to indicate login is
complete and commands may be issued. A message of the day
may be typed if there are any announcements. Also, if there
is a file called mailbox , you are notified that someone has
sent you mail. (See the mail command.)

From a 300—baud terminal, the procedure is slightly
different. Such terminals often have a full—duplex switch,
which should be turned on (or conversely, half—duplex should
be turned off). When a connection with UNIX is established,
a few garbage characters are typed (these are the login:
message at the wrong speed). You should depress the "break"
key; this is a speed—independent signal to UNIX that a 300—
baud terminal is in use. It will type login: (at the correct
speed this time) and from then on the procedure is the same
as described above.

Logging out is simple by comparison (in fact, sometimes too
simple). Simply generate an end—of—file at Shell level using
the EOT character; the "login:" message will appear again to
indicate that you may log in again.

11/3/71 LOGIN, LOGOUT (VII)

It is also possible to log out simply by hanging up the
terminal; this simulates an end—of—file on the typewriter.

FILES

SEE ALSO init

DIAGNOSTICS

BUGS Hanging up on programs which never read the typewriter or
which ignore end—of—files is very dangerous; in the worst
cases, the programs can only be halted by restarting the
system.

OWNER ken, dmr

11/3/71 /ETC/MSH (VII)

NAME msh -- mini-shell

SYNOPSIS

DESCRIPTION msh is a heavily simplified version of the Shell. It reads
one line from the standard input file, interprets it as a
command, and calls the command.

The mini—shell supports few of the advanced features of the
Shell; none of the following characters is special:

> < $ \ ; &

However, "*" and "?" are recognized and glob is called. The
main use of msh is to provide a command—executing facility
for various interactive sub-systems.

FILES

SEE ALSO sh, glob

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 /ETC/SUFTAB (VII)

NAME suftab -- suffix table

SYNOPSIS

DESCRIPTION suftab is a table of suffixes used to guide hyphenation in
roff. Its first 12 words are not used (see a.out format) Its
next 26 words point to the beginning of the subtables for
each of the 26 initial letters of a suffix. The first entry
for each suffix is a count of the number of bytes in the
suffix. The second byte of each entry is a flag indicating
the type of suffix. The suffix itself follows; the high bits
of each letter indicate where the hyphens come. The table
for each initial suffix letter ends with a zero count byte.

FILES

SEE ALSO roff

DIAGNOSTICS

BUGS

OWNER jfo, dmr, ken

11/3/71 /ETC/TABS (VII)

NAME tabs -- tab stop set

SYNOPSIS cat /etc/tabs

DESCRIPTION When printed on a suitable terminal, this file will set tab
stops at columns 8, 16, 24, 32, Suitable terminals
include the Teletype model 37 and the GE TermiNet 300.

Since UNIX times delays assuming tabs set every 8, this has
become a defacto ‘standard.’

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER ken

